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Abstract
Background This study aimed to develop a BI-RADS network (DL-UM) via integrating ultrasound (US) and 
mammography (MG) images and explore its performance in improving breast lesion diagnosis and management 
when collaborating with radiologists, particularly in cases with discordant US and MG Breast Imaging Reporting and 
Data System (BI-RADS) classifications.

Methods We retrospectively collected image data from 1283 women with breast lesions who underwent both US 
and MG within one month at two medical centres and categorised them into concordant and discordant BI-RADS 
classification subgroups. We developed a DL-UM network via integrating US and MG images, and DL networks using 
US (DL-U) or MG (DL-M) alone, respectively. The performance of DL-UM network for breast lesion diagnosis was 
evaluated using ROC curves and compared to DL-U and DL-M networks in the external testing dataset. The diagnostic 
performance of radiologists with different levels of experience under the assistance of DL-UM network was also 
evaluated.

Results In the external testing dataset, DL-UM outperformed DL-M in sensitivity (0.962 vs. 0.833, P = 0.016) and 
DL-U in specificity (0.667 vs. 0.526, P = 0.030), respectively. In the discordant BI-RADS classification subgroup, DL-UM 
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Background
Mammography (MG) is recommended for breast cancer 
screening, but its sensitivity is limited in women with 
dense breasts [1]. Ultrasound (US), as a supplementary 
screening tool for dense breasts, however, falls short in 
detecting microcalcifications, a crucial indicator of early 
breast cancer [2]. MRI, although effective in detecting 
early breast cancer [3], is currently only recommended 
for high-risk women due to its high cost and lengthy 
scans [4]. Therefore, combining US and MG could poten-
tially mitigate these limitations and improve cancer 
detection, particularly for women with dense breasts [5].

However, discordances of Breast Imaging Report-
ing and Data System (BI-RADS) classifications between 
US and MG are inevitable, potentially causing unneces-
sary anxiety and biopsies [6]. Previous attempts using 
shear wave elastography and contrast-enhanced US to 
improve diagnosis in discordant BI-RADS cases [7, 8] 
have encountered controversy due to high operator vari-
ability and discrepancies in diagnostic criteria. A recent 
study [6] proposed a nomogram integrating visual analy-
sis of US and MG, but it relies on subjective radiologi-
cal observation, posing challenges for less experienced 
radiologists. Therefore, to develop a robust and objective 
method for optimizing diagnosis and management of 
breast lesions with discordant US and MG classifications 
is imperative.

Deep learning (DL), allowing automatic analyzing 
medical images, has shown promise in breast cancer 
detection and management [9, 10]. Emerging evidence 
[11–14] suggests that extracting multimodal radiomics 
features through DL approaches could overcome uni-
modal imaging limitations, offering comprehensive and 
complementary diagnostic insights. Numerous studies 
[15, 16] indicated that artificial intelligence (AI) integra-
tion with radiologists could improve diagnostic accuracy, 
especially for junior radiologists, bolstering the role of 
artificial intelligence in clinical decision-making. How-
ever, how to effectively integrate DL models and radiolo-
gists of varying experience levels in cases of discordant 
MG and US BI-RADS classifications remains unclear. 
Moreover, radiologists’ perceptions of DL outputs may 

raise uncertainty regarding its clinical applicability, war-
ranting further investigation.

Hence, we aimed to develop a DL network via inte-
grating US and MG images (DL-UM) and investigate its 
performance in improving breast lesion diagnosis and 
management when collaborating with radiologists, par-
ticularly in cases of discordant US and MG BI-RADS 
classifications. Additionally, we explored the potential 
of DL-UM outputs and heatmaps to foster trust of radi-
ologists with various experience in stimulated clinical 
workflow.

Methods
Statement of ethics
This study was approved by the Institutional Ethics 
Committee of the hospital (NFEC-202012-K8) and the 
requirement for informed consent was waived owing to 
the retrospective design and use of anonymized data.

Study population
Women undergoing breast imaging were consecutively 
and retrospectively collected from the Medical Centre 1 
between June 2019 and June 2021 to form the develop-
ment dataset for establishing DL network. An external 
testing dataset was consecutively collected from Medical 
Centre 2 between January 2021 and June 2021. Figure 1 
shows the patient selection flowchart.

Inclusion criteria were as follows: (1) women aged > 18 
years with paired MG and US imaging conducted within 
1 month; (2) consistent targeted lesion findings on both 
MG and US; and (3) collected the most suspicious lesion 
in cases of multiple lesions in the imaging data. Exclu-
sion criteria were as follows: (1) no pathological results; 
(2) incomplete or low-quality imaging data; (3) radio-
therapy or neoadjuvant chemotherapy before examina-
tion; (4) patients with incomplete BI-RADS assessment 
(to exclude BI-RADS 0 cases); and (5) previous biopsy 
or surgery before examination (to exclude BI-RADS 6 
cases).

After selection, 1126 patients from Medical Centre 1 
were included for analysis and randomised into the train-
ing, validation, and internal testing cohorts in a 7:1:2 

achieved an AUC of 0.910. The diagnostic performance of four radiologists improved when collaborating with the 
DL-UM network, with AUCs increased from 0.674–0.772 to 0.889–0.910, specificities from 52.1%–75.0 to 81.3–87.5% 
and reducing unnecessary biopsies by 16.1%–24.6%, particularly for junior radiologists. Meanwhile, DL-UM outputs 
and heatmaps enhanced radiologists’ trust and improved interobserver agreement between US and MG, with 
weighted kappa increased from 0.048 to 0.713 (P < 0.05).

Conclusions The DL-UM network, integrating complementary US and MG features, assisted radiologists in improving 
breast lesion diagnosis and management, potentially reducing unnecessary biopsies.

Keywords Neural networks, Ultrasonography, Digital mammography, Clinical decision-making, Breast tumours
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allocation ratio. The external testing cohort comprised 
157 patients from Medical Centre 2.

Imaging acquisition and interpretation
MG images were acquired using Mammomat Novation 
DR (Siemens AG Medical Solutions, Erlangen, Germany) 
and Selenia Dimensions (Hologic, Bedford, Mass, USA) 
digital systems, encompassing craniocaudal and medio 
lateral-oblique views. US images were obtained using 
different devices, including Aixplorer (SuperSonic Imag-
ine, Aix-en-Provence, France), Logiq E9 (GE Healthcare, 
Wauwatosa, WI, USA) systems, and other systems with 
7.5–15  MHz linear high-frequency transducers. Two-
directional (transverse and longitudinal) static images 
were recorded, focusing on the region of interest in each 
patient’s image data that exhibited the most suspicious 
lesion. For reliable and reproducible BI-RADS classifi-
cations, six senior radiologists (R1–R3 with ≥ 5 years of 

experience in breast US, R4–R6 with ≥ 8 years of expe-
rience in MG,) independently reviewed all images. If 
results diverged, the radiologists resolved discrepancies 
through discussion to reach a consensus for the final 
diagnosis. The radiologists were blind to the pathological 
results but had access to clinical information and prior 
imaging.

According to the 2013 American College of Radiology 
BI-RADS criteria, lesions rated as 2 or 3 were considered 
benign or probably benign, while those classified as 4 or 
5 were considered suspicious, warranting tissue diagno-
sis. A discordant BI-RADS classification between US and 
MG was defined when a lesion was classified as 4 or 5 on 
one modality but as 2 or 3 on the other. Based on these 
standards, all lesions were categorised into subgroups 
with discordant or concordant BI-RADS classifications.

Fig. 1 Flowchart of patient selection. US, ultrasound; MG, mammography
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Data pre-processing
Data pre-processing involved cropping irrelevant regions 
in US and MG images to minimise their negative effects 
on network performance, conducted by experienced 
radiologists (R1–R6) using ITK-SNAP software  (   h t t p : / / w 
w w . r a d i a n t v i e w e r . c o m     ) . To account for diagnostic  s i g n i fi  c 
a n c e of adjacent tissue, regions of interest (ROIs) in both 
MG and US images were expanded by 30% of their short-
est lengths. All images were then resized to a standard 
size (224 pixels × 224 pixels), and intensity values were 
normalised to the minimum-maximum intensity range 
(0–1).

Model architecture
Figure 2 depicts the study design and the architecture of 
the DL-UM network. The network included two feature 
extraction branches, one each for US and MG images, 
with a shared feature identification developed using 
VGG19 [17]. Inputs for each feature extraction branch 
were 224 × 224-pixel paired patches from US and MG 
images after lesion segmentation and image preprocess-
ing. Each branch comprised 5 convolution blocks with 
convolution layers of 2, 2, 4, 4, and 4, respectively, and 
of 64, 128, 256, 512, and 512 filters with a kernel size 
of 3 × 3, for efficiently extracting and propagating the 
coarse-to-fine representations. To prevent from gradi-
ent vanishing and enhance network sparsity, the last 
convolutional layers of all convolution blocks were fol-
lowed by a batch normalization and a nonlinear Recti-
fied Linear Unit activation operator. For the first four 
blocks, the activated features would pass through a 
maximum pooling layer with the pooling window size of 
2 × 2 to perform feature dimension reduction for reliev-
ing overfitting issue. Meanwhile, they were also input to 
an additional classification head, including a global aver-
age pooling (GAP) layer, two fully connected layers with 
neuron numbers of 64 and 1, and a sigmoid function, for 
encouraging the network to capture more discrimina-
tive information via deep supervision strategy [18]. In 
the final convolution block, the maximum pooling layer 
was removed and features from GAP layer were used for 
subsequent supervision and final classification. Given the 
output features from final convolution block, a concat-
enation operation was embedded into the end of network 
to receive and integrate the final representations derived 
from US and MG branches. Finally, the integrated fea-
ture representations were used to perform breast tumour 
classification via the same classification head. A focal 
loss [19] was used as supervision function to focus net-
work’s attention on the samples difficult to classify dur-
ing training. Meanwhile, the mean absolute error (MAE) 
to force the final predictions of US and MG branches to 
be consistent. During the network training, the Adam 
optimizer was used with the global learning rate of 

1 × 10 − 4. Meanwhile, the momentum was 0.9 and the 
batch size was 16. After every epoch, model parameters 
were saved and the model with the lowest average loss 
on the validation set was chosen for evaluation on the 
test data set. The DL-UM models, developed in Python 
(3.6.13; Python Software Foundation, Wilmington, DE, 
USA), were trained and evaluated using five-fold cross-
validation, with samples from different classes randomly 
partitioned by patient. The DL models were trained on a 
server with eight 12GB NVIDIA GeForce RTX 2080 Ti 
GPUs, an Intel Xeon E5-2650 v4 CPU @ 2.20 GHz, and 
192GB RAM. Key Python packages and versions include 
TensorFlow (v2.1.0), Keras (v2.3.1), NumPy (v1.19.2), 
Pandas (v1.1.5), scikit-learn (v0.20.3), Matplotlib (v3.3.4), 
and Pillow (v8.4.0).

Network interpretability
The Class Activation Map (CAM) [20] technique visu-
alizes the image regions a DL model focused on during 
classification, pinpointing areas that significantly influ-
ence decision-making. CAMs help illustrate which image 
areas contribute most to the model’s decisions, support-
ing radiologists in evaluating and interpreting the mod-
el’s performance. In our model, CAMs were generated 
from the last convolutional layer in each block to high-
light areas of network focus. The GAP layer produced 
an eigenvector representing average feature significance, 
which was weighted and applied to feature maps for visu-
alization. The resulting heatmap effectively emphasized 
the critical tumor regions identified by the network.

DL-UM-assisted radiologist
Breast images from Medical Centre 2 were independently 
evaluated by two junior radiologists (3 years of experi-
ence in breast US [R7] and MG [R8]) and two senior 
radiologists (8 years of experience in breast US [R9] and 
10 years of experience in MG [R10]). After analysing US 
and MG images independently, four radiologists dichot-
omised all lesions as “possibly benign” and “possibly 
malignant” respectively. After two months, radiologists 
(R7–R10) re-analysed the US and MG images in random 
orders and referred to DL-UM outputs (based on both 
US and MG images) for a dichotomous classification 
diagnosis. Meanwhile, radiologists could accept or reject 
DL-UM suggestions or request AI explanations with 
heatmaps (for both US and MG images) (see Fig.  2E). 
Additionally, before and after reviewing the DL-UM out-
puts, each radiologist had access to clinical information, 
both US and MG images for each patient but remaining 
blind to pathologic results. To evaluate DL-UM-assisted 
radiologists contributing to decision-making at a simu-
lated clinical setting, we quantified the potential reduc-
tion in recommended biopsies and unnecessary biopsies 
based on DL-UM outputs and radiologist interpretations. 

http://www.radiantviewer.com
http://www.radiantviewer.com
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Following previous studies [21, 22], recommended biop-
sies included all cases predicted as malignant, while 
unnecessary biopsies were defined as cases predicted 
as malignant but pathologically confirmed as benign. 
Meanwhile missed malignancies were defined as cases 

predicted as benign but pathologically confirmed as 
malignant.

Statistical analysis
Continuous variables were analysed using independent 
t-tests, while categorical variables were compared using 

Fig. 2 Design of the study. A. Patients underwent paired ultrasonic and mammographic imaging within 1 month and were dichotomised into subgroups 
with concordant and discordant ultrasonic and mammographic BI-RADS classifications. B. Summary of development and external testing datasets from 
two medical centres. C. Architecture of the deep learning (DL-UM) network. The DL-UM network includes two feature extraction branches and a clas-
sification head. Each branch comprises five convolution blocks (i.e., {CBi}5

i=1), with the convolution of layers 2, 2, 4, 4, and 4, and subsequent filtering 
at 64, 128, 256, 512, and 512 Hz, respectively, using filters with a 3 × 3 kernel size. A focal loss function is used for deep supervision and classification 
loss, with the mean absolute error loss function used to force the final output of the two branches to be consistent. * In the VGG19 model used in this 
study, Block 2, Block 4, and Block 5 share the same architectural structure as Block 3, while Block 1 and Block 3 represent two distinct structural designs. 
D. Diagnostic performances of three DL models were compared with ROC curves. E. Overview of DL-UM-assisted radiologist workflow. First step, four 
radiologists independently reviewed and analysed US and MG images, dichotomising the lesion as “possibly benign” and “possibly malignant”. After two 
months, radiologists respectively re-analysed the US and MG images in random orders and referred to DL-UM outputs (“possibly benign” and “possibly 
malignant”). Meanwhile, radiologists could accept or reject DL-UM suggestions or request AI explanations with heatmaps, and made the final diagnosis
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chi-squared (χ²) or Fisher’s exact tests. Predictive perfor-
mances of the three DL networks and radiologists were 
assessed with receiver operating characteristic (ROC) 
curve analyses. Diagnostic accuracy was compared using 
Delong’s test, and sensitivity and specificity were com-
pared with the chi-square test. Inter-observer agreement 
was analysed using weighted Kappa values. Statistical 
analyses were performed using SPSS Statistics (version 
24.0) and R software (version 3.3.0), with a two-sided 
P-value of 0.05 for significance.

Results
Patient demographics
Overall, we included 1126 patients from Medical Centre 
1 (mean age, 47.1 ± 10.0 years; 573 benign and 553 malig-
nant lesions) and 157 patients from Medical Centre 2 
(mean age, 51.9 ± 11.1 years; 79 benign and 78 malignant 
lesions). Demographics are summarised in Table 1. Origi-
nal US and MG BI-RADS categories with histopathologic 
results are presented in Supplementary Table 1.

Diagnostic performance of individual and fusion models
In the external testing dataset (Fig. 3), DL-UM exhibited 
significant superiority over DL-U in specificity (0.667 
[95% CI, 0.624–0.709] vs. 0.526 [95% CI, 0.487–0.564], 
P = 0.030) and over DL-M in sensitivity (0.962 [95% CI, 
0.945–0.978] vs. 0.833 [95% CI, 0.802–0.865], P = 0.016). 
This difference was particularly notable in the discordant 
classification subgroup (Fig. 3 and Supplementary Table 
2). Results for development and external test datasets are 
found in Supplementary Tables 3–8.

Diagnostic performance and management improvement 
through DL-UM-assisted radiologists
In the external testing dataset, the diagnostic perfor-
mance of radiologists with DL-UM assistance signifi-
cantly improved compared to radiologists alone, with 
area under the ROC curve (AUC) values increased from 
0.734–0.835 to 0.898–0.918 (all P < 0.05) and specifici-
ties from 57.0%–76.0 to 84.8–86.1% (all P < 0.05) (Table 2; 
Fig. 4). Meanwhile DL-UM-assisted radiologists achieved 
a significant reduction of 8.3–18.7% in unnecessary biop-
sies, regardless of radiologists’ experience (all P < 0.05) 
(Table 2). Similarly, such improvements were more pro-
nounced in the subgroup of discordant classification 
cases, with increased AUC from 0.674–0.772 to 0.889–
0.910 (all P < 0.05) and specificities from 52.1%–75.0 to 
81.3–87.5% (all P < 0.05), and 16.1%–24.6% cases could 
avoid unnecessary biopsies (all P < 0.001).

Clinical implications of radiologists’ trust for DL-UM 
diagnostic support
During the DL-UM-assisted workflows, 73.1% of radi-
ologists showed positive acceptance of DL-UM outputs 
(Supplementary Tables 9 and Fig. 5). Within the discor-
dant subgroup, however, there was a notable increase in 
the demand for explanations (26.0% of cases) (Table  3). 
Meanwhile DL-UM explanation resulted in a significant 
reduction in unnecessary biopsies by 19.2%, and also 
decreasing the rate of missed malignancies by 10.8%. 
Additionally, compared to senior radiologists, the utiliza-
tion of heatmaps allowed junior radiologists to achieve a 
greater reduction in unnecessary biopsies by 19.6% and 
in missed diagnoses by 11.5% (Table 3).

Interobserver agreement of radiologists with and without 
the assistance of DL-UM
Without DL-UM, agreement between US and MG 
was significantly lower in the discordant subgroup 
(kappa = 0.048) than that in the concordant subgroup 
(kappa = 0.618, P < 0.05). With DL-UM assistance, 
interobserver agreement significantly enhanced with 
increased weighted kappa from 0.048 to 0.713 (P < 0.05) 
in the discordant classification subgroup. Moreover, 
observer agreement between R7 and R9 or between 

Table 1 Patient demographics
Characteristics Medical Centre 

1 (n = 1126)
Medical Cen-
tre 2 (n = 157)

P

BI-RADS classification (%) 0.584
 Concordant 600 (53.3%) 80 (51.0%)
 Discordant 526 (46.7%) 77 (49.0%)
Pathology (%) 0.894
 Benign 573 (50.9%) 79 (50.3%)
 Malignant 553 (49.1%) 78 (49.7%)
Age 47.1 ± 10.0 51.9 ± 11.1 < 0.001
BMI 23.46 ± 3.12 24.10 ± 2.86 0.015
Menopausal < 0.001
 Premenopausal 692 (61.5%) 50 (31.8%)
 Postmenopausal 434 (38.5%) 107 (68.2%)
Parity 0.868
 Nulliparous 47 (4.2%) 7 (4.5%)
 Parous 1079 (95.8%) 150 (95.5%)
Family history 0.434
 No 1105 (98.1%) 156 (99.4%)
 Yes 21 (1.9%) 1 (0.6%)
Nipple discharge 0.865
 No 1086 (96.4%) 151 (96.2%)
 Yes 40 (3.6%) 6 (3.8%)
Mammography-breast composition 0.700
 category A + B 104 (9.2%) 16 (10.2%)
 category C + D 1022 (90.8%) 141 (89.8%)
Data in parentheses are percentages, except for age and BMI (mean ± SD). The 
P-values represent the comparisons between two medical centers for each 
characteristic. Abbreviations: BI-RADS: Breast Imaging Reporting and Data 
System; BMI: Body Mass Index; Mammography-breast composition: almost 
entirely fatty (category A); scattered areas of fibroglandular tissue (category B); 
heterogeneously dense (category C); extremely dense (category D)



Page 7 of 12Xu et al. Breast Cancer Research           (2025) 27:80 

R8 and R10 significantly increased to 0.739 and 0.687, 
respectively (both P < 0.05) (Fig. 6; Table 4).

Discussion
In this study, the bimodal DL-UM network, integrat-
ing US and MG complementary features, significantly 
improved specificity compared to DL-U and sensitivity 
compared to DL-M, particularly in the discordant classi-
fication subgroup. With the aid of DL-UM, radiologists’ 
diagnostic accuracy and specificity were significantly 
enhanced, resulting in a notable reduction in unnecessary 
biopsies, especially for junior radiologists, and improv-
ing consistency between US and MG. The potential of 

DL-UM in building radiologists’ trust in AI was further 
emphasised, with heatmaps aiding in preventing unnec-
essary biopsies and missed malignancies. These findings 
highlight the value of DL-UM as a complementary tool 
to assist radiologists in optimizing breast lesion diagnosis 
and management.

In alignment with prior DL studies on MG [23–25], this 
study found that DL-M demonstrated high specificity but 
reduced sensitivity, which attributed to the obscuring 
effect of dense breast parenchyma in two-dimensional 
imaging of MG [1]. Conversely, as noted in previous AI 
studies [11, 26, 27], DL-U showed high sensitivity but 
with low specificity, which may result from overlapping 

Fig. 3 Comparison of performance among the three DL models. a/d/g: all cases combined; b/e/h: concordant cases; c/f/i: discordant cases; AUC, area 
under the receiver operating characteristic curve
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ultrasonic features in benign and malignant lesions, lead-
ing to potential misdiagnoses [28]. While DL-UM did 
not significantly exceed DL-M in specificity or DL-U 
in sensitivity, it maintained a sensitivity level compara-
ble to DL-U as well as a specificity level comparable to 

DL-M simultaneously. This result underscored DL-UM’s 
capability to effectively integrate the complementary 
diagnostic information of two modalities, mitigating 
their individual limitations. Such integration enhanced 
the performance of DL-UM with higher AUC in breast 

Table 2 Diagnostic performance and management recommendation improvement through DL-UM-radiologists collaboration
Recommended 
biopsy (%)

Unnecessary 
biopsies (%) ^

AUC Sensitivity (%) Specificity (%)

All cases 
combined
(n = 157)

US R7 66.2 (104/157) 32.7 (34/104) 0.734 (0.654–0.814) 89.7 (85.0-94.5) 57.0 (49.2–64.7)
R7 + DL-UM 54.8 (86/157) 14.0 (12/86) 0.898 (0.844–0.953) 94.9 (91.4–98.3) 84.8 (79.2–90.4)
R9 59.9 (94/157) 24.5 (23/94) 0.810 (0.739–0.881) 91.0 (86.6–95.5) 70.9 (63.8–78.0)
R9 + DL-UM 55.4 (87/157) 12.6 (11/87) 0.918 (0.868–0.967) 97.4 (95.0-99.9) 86.1 (80.7–91.5)

MG R8 64.3 (101/157) 30.7 (31/101) 0.753 (0.674–0.831) 89.7 (85-9.49.0) 60.8 (53.1–68.4)
R8 + DL-UM 56.1 (88/157) 13.6 (12/88) 0.911 (0.860–0.963) 97.4 (95.0-99.9) 84.8 (79.2–90.4)
R10 57.3 (90/157) 21.1 (19/90) 0.835 (0.768–0.902) 91.0 (86.6–95.5) 76.0 (69.3–82.6)
R10 + DL-UM 54.8 (86/157) 12.8 (11/86) 0.911 (0.860–0.963) 96.2 (93.2–99.2) 86.1 (80.7–91.5)

concordant 
cases
(n = 80)

US R7 71.3 (57/80) 19.3 (11/57) 0.792 (0.680–0.904) 93.9 (88.6–99.1) 64.5 (54.0–75.0)
R7 + DL-UM 61.3 (49/80) 6.1 (3/49) 0.921 (0.849–0.993) 93.9 (88.6–99.1) 90.3 (83.8–96.8)
R9 66.3 (53/80) 11.3 (6/53) 0.883 (0.794–0.972) 95.9 (91.6-100.2) 80.7 (72.0-89.3)
R9 + DL-UM 65.0 (52/80) 7.7 (4/52) 0.925 (0.852–0.999) 98.0 (94.9-101.1) 87.1 (79.8–94.4)

MG R8 71.3 (57/80) 21.1 (12/57) 0.766 (0.650–0.882) 91.8 (85.8–97.8) 61.3 (50.6–72.0)
R8 + DL-UM 63.8 (51/80) 5.9 (3/51) 0.941 (0.876-1.000) 98.0 (94.9-101.1) 90.3 (83.8–96.8)
R10 68.8 (55/80) 12.7 (7/55) 0.877 (0.784–0.969) 98.0 (94.9-101.1) 77.4 (68.3–86.6)
R10 + DL-UM 66.3 (53/80) 9.4 (5/53) 0.909 (0.828–0.990) 98.0 (94.9-101.1) 83.9 (75.8–91.9)

discordant 
cases
(n = 77)

US R7 61.0 (47/77) 48.9 (23/47) 0.674 (0.552–0.796) 82.8 (74.3–91.2) 52.1 (40.9–63.2)
R7 + DL-UM 48.1 (37/77) 24.3 (9/37) 0.889 (0.811–0.967) 96.6 (92.5-100.6) 81.3 (72.5–90.0)
R9 53.2 (41/77) 41.5 (17/41) 0.737 (0.622–0.851) 82.8 (74.3–91.2) 64.6 (53.9–75.3)
R9 + DL-UM 45.5 (35/77) 20.0 (7/35) 0.910 (0.839–0.981) 96.6 (92.5-100.6) 85.4 (77.5–93.3)

MG R8 57.1 (44/77) 43.1 (19/44) 0.733 (0.619–0.847) 86.2 (78.5–93.9) 60.4 (49.5–71.3)
R8 + DL-UM 48.1 (37/77) 24.3 (9/37) 0.889 (0.811–0.967) 96.6 (92.5-100.6) 81.3 (72.5–90.0)
R10 45.5 (35/77) 34.3 (12/35) 0.772 (0.660–0.883) 79.3 (70.3–88.4) 75.0 (65.3–84.7)
R10 + DL-UM 42.9 (33/77) 18.2 (6/33) 0.903 (0.826–0.980) 93.1 (87.5–98.8) 87.5 (80.1–94.9)

Data are expressed as means and 95% confidence intervals in parentheses or as a count in parentheses. R7: junior radiologist in breast ultrasound; R8: junior 
radiologist in breast mammography; R9: senior radiologist in breast ultrasound; R10: senior radiologist in breast mammography. ^: Biopsies in benign lesions. 
Abbreviations: US, ultrasound; MG, mammography; BI-RADS, Breast Imaging Reporting and Data System; AUC, area under the receiver operating characteristic curve

Fig. 4 The diagnostic performance of radiologists with and without the assistance of DL-UM. a: all cases combined; b: subgroup of concordant cases; c: 
subgroup of discordant cases. R7: junior radiologist in breast ultrasound; R8: junior radiologist in breast mammography; R9: senior radiologist in breast 
ultrasound; R10: senior radiologist in breast mammography
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cancer detection and improved adaptability of DL-UM 
across complex clinical scenarios.

While most previously reported multimodal radiomics 
studies [29, 30] have shown promise in breast cancer 
diagnosis, but often stopped at merging outputs from 
individual modalities [25, 31–33], neglecting valuable 
complementary diagnostic information between mul-
timodalities. By contrast, the DL-UM comprehensively 
extracted feature across multiple modalities, incorporat-
ing both intramodal features from identical imaging data 
and intermodal features from diverse imaging types. This 
approach focused on integrating diagnostic features from 
both US and MG, recognizing their complementary and 
correlated diagnostic role [34]. When applied to complex 

scenarios like discordant MG and US BI-RADS classifica-
tion, DL-UM was optimised through focal loss supervi-
sion for challenging and difficult samples and minimising 
feature disparities between US and MG classifiers with 
MAE. Our results underscored the effectiveness of the 
DL-UM, particularly in cases with discordant MG and 
US classifications.

In stimulated clinical workflows without the involve-
ment of DL-UM, even experienced radiologists exhib-
ited reduced diagnostic accuracy in cases of discordant 
BI-RADS classification. However, the incorporation 
of DL-UM significantly enhanced diagnostic perfor-
mance, particularly benefiting less experienced radiolo-
gists who achieved comparable results to their senior 

Fig. 5 Radiologists’ attitude to the outputs of DL-UM. A: all radiologists; B: all cases combined; C: subgroup of concordant cases; D: subgroup of discor-
dant cases
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counterparts. In this study, 65% (392 out of 603) of dis-
cordant cases underwent unnecessary biopsies, a con-
cern often associated with high recall rates and biopsy 
rates [7, 8]. However, the addition of DL-UM resulted 
in a notable reduction in unnecessary biopsies. Prior 
research [35, 36] has reported significant improvements 
in diagnostic agreement among radiologists with vary-
ing levels of experience when AI is introduced, consistent 
with our findings. Notably, DL-UM assistance improved 

inter-observer consistency between US and MG, espe-
cially in cases with divergent MG and US BI-RADS clas-
sifications. Such improvement highlighted AI’s potential 
to support radiologists with diverse backgrounds in 
breast imaging, reducing subjective bias and addressing 
uncertainties in areas such as image interpretation, result 
communication, and treatment decisions.

Understanding radiologists’ trust in AI is crucial 
for its integration into clinical practice [37]. Overall, 

Table 3 Clinical impact of radiologists’ requirement for explanations using heatmaps in DL-UM-radiologists collaboration data are 
expressed as a count of cases in parentheses. R7: junior radiologist in breast ultrasound; R8: junior radiologist in breast mammography; 
R9: senior radiologist in breast ultrasound; R10: senior radiologist in breast mammography

Percentage 
(%)

Unnecessary 
biopsies with-
out DL-UM

Unnecessary 
biopsies with 
DL-UM

Decreased 
biopsies 
(%)

Missed malig-
nancies without 
DL-UM

Missed malig-
nancies with 
DL-UM

Avoided 
missed 
malignan-
cies (%)

All cases 
combined

R7-R10 18.95 (119/628) 15.94 (62/389) 2.31 (8/347) 13.63 10.04 (24/239) 1.78 (5/281) 8.26
Junior radiologists 23.25 (73/314) 20.49 (42/205) 3.45 (6/174) 17.04 11.93 (13/109) 2.14 (3/140) 9.78
Senior radiologists 14.65 (46/314) 10.87 (20/184) 1.16 (2/173) 9.71 8.46 (11/130) 1.42 (2/141) 7.04

Concor-
dant cases

R7-R10 12.19 (39/320) 10.81 (24/222) 1.46 (3/205) 9.35 8.16 (8/98) 3.48 (4/115) 4.69
Junior radiologists 16.25 (26/160) 15.79 (18/114) 1.00 (1/100) 14.79 10.87 (5/46) 3.33 (2/60) 7.54
Senior radiologists 8.13 (13/160) 5.56 (6/108) 1.90 (2/105) 3.65 5.77 (3/52) 3.64 (2/55) 2.13

Discordant 
cases

R7-R10 25.97 (80/308) 22.75 (38/167) 3.52 (5/142) 19.23 11.35 (16/141) 0.60 (1/166) 10.75
Junior radiologists 30.52 (47/154) 26.37 (24/91) 6.76 (5/74) 19.62 12.70 (8/63) 1.25 (1/80) 11.45
Senior radiologists 21.43 (33/154) 18.42 (14/76) 0 (0/68) 18.42 10.26 (8/78) 0 (0/86) 10.26

Table 4 Interobserver agreement with and without the collaboration of DL-UM
US R7 + R9 vs. MG R8 + R10 MG: R8 vs. R10
Without DL-UM With DL-UM Without DL-UM With DL-UM Without DL-UM With DL-UM

All cases combined 0.332 (0.225–0.438) 0.749 (0.675–0.823) 0.401 (0.255–0.548) 0.755 (0.652–0.858) 0.641 (0.519–0.763) 0.820 (0.729–0.910)
Concordant cases 0.618 (0.485–0.750) 0.769 (0.666–0.873) 0.652 (0.473–0.831) 0.759 (0.611–0.906) 0.703 (0.532–0.873) 0.945 (0.870-1.000)
Discordant cases 0.048 (-0.108-0.205) 0.713 (0.601–0.824) 0.157 (-0.062-0.375) 0.739 (0.589–0.890) 0.564 (0.386–0.742) 0.687 (0.525–0.849)
US, radiologists with breast US imaging experience; MG, radiologists with breast MG imaging experience

kappa value < 0 indicated poor agreement; <0.20, slight agreement; <0.21 to 0.40, fair agreement; <0.41 to 0.60, moderate agreement;< 0.61 to 0.80, substantial 
agreement; 0.81 to 1.00, almost perfect agreement

R7: junior radiologist in breast ultrasound; R8: junior radiologist in breast mammography; R9: senior radiologist in breast ultrasound; R10: senior radiologist in breast 
mammography

Fig. 6 Interobserver agreement between radiologists with and without the aid of DL-UM. R7: junior radiologist in breast ultrasound; R8: junior radiologist 
in breast mammography; R9: senior radiologist in breast ultrasound; R10: senior radiologist in breast mammography
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radiologists expressed positive feedback regarding 
DL-UM outputs, which could enhance their confidence 
in image interpretation and patient management [38], 
particularly for junior radiologists. However, trust in DL 
results diminished when radiologists hesitated, particu-
larly when US and MG classification diverge, leading to 
a surge in demand for AI explanations. Heatmaps play a 
vital role in gaining radiologists’ trust in DL-UM by high-
lighting lesion boundaries, peri-tumoral areas, and cal-
cifications in both US and MG images, aligning closely 
with visual diagnoses. Adjusting the initial diagnosis 
based on heatmaps improved breast cancer detection and 
reduced unnecessary biopsies. Our findings emphasized 
the necessity of providing explanations in AI implemen-
tation, especially for inconclusive diagnoses or when 
there is skepticism regarding DL-UM output, particularly 
among less experienced radiologists.

There are still some limitations in this study. First, 
excluding patients with follow-ups may introduce selec-
tion bias. Second, 6.5% (83/1283) of the patients under-
went biopsy despite having BI-RADS classifications of 2 
or 3 on both MG and US, influenced by factors beyond 
BI-RADS, such as palpation findings and patient prefer-
ences in routine clinical settings. This could potentially 
affect the practical utility of DL-UM in clinical decision-
making. Third, as this study is retrospective and involves 
only two medical centres, further prospective studies 
with larger sample sizes from multiple centres are nec-
essary to improve model performance and generalisabil-
ity. Finally, in this study, ROIs were manually outlined 
to ensure the consistent targeting of lesions on both US 
and MG images. However, there are ongoing efforts to 
develop automated segmentation software for multimo-
dalities to address the requirements of large-scale data-
sets and integrate them into clinical workflows in the 
future.

Conclusion
The DL-UM bimodal fusion network, integrating US 
and MG complementary features, showed good perfor-
mance for breast lesion diagnosis, particularly for those 
cases of discordant US and MG BI-RADS classification. 
The DL-UM network showed great potential to support 
radiologists in breast lesion diagnosis and management, 
reducing unnecessary biopsies. Following prospective 
multicentre clinical trials, the DL-UM network may be 
evolved into an advanced software module, seamlessly 
integrating into clinical practice to aid decision-making 
and advance precision healthcare.
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