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Abstract 

Mutations in ESR1 play a critical role in resistance to endocrine therapy (ET) in hormone receptor-positive (HR +)/
HER2- metastatic breast cancer (MBC). Testing for ESR1 mutations is essential for guiding treatment with novel oral 
selective estrogen receptor degraders (SERDs) like elacestrant or camizestrant. While most studies have utilized 
liquid biopsy (LB) for mutation detection, the role of formalin-fixed paraffin-embedded (FFPE) tissue biopsy in this 
context remains unclear. In this study, we analyzed a cohort of HR + /HER2- MBC patients who experienced resist-
ance to ET and CDK4/6 inhibitors. Next-generation sequencing (NGS) was performed on FFPE biopsy samples 
obtained from metastatic sites at the time of disease progression. ESR1 mutations were detected in 24 out of 38 
patients (63.2%), with p.D538G identified in 10 patients (45.5%) and p.Y537S in 6 patients (27.2%) as the most fre-
quent alterations. One patient exhibited dual ESR1 mutations, and a recurrent ESR1-CCDC170 gene fusion was identi-
fied, underscoring the diversity and potential interplay of genetic alterations driving resistance in HR + /HER2- MBC. 
Notably, lung metastases were significantly more common in ESR1 mutant cases (8/24, 33.3%) compared to wild-
type cases (1/14, 7.1%), while liver metastases showed no difference between mutant (12/24, 50.0%) and wild-type 
groups (7/14, 50.0%). Co-mutations in actionable pathways, particularly PIK3CA, were observed in n = 10 ESR1 mutant 
tumors (41.6%), highlighting their contribution to resistance mechanisms and posing significant challenges for treat-
ment selection, as these alterations may necessitate combination therapies to effectively target multiple resistance 
pathways. This study presents new insights into the prevalence and clinical significance of ESR1 mutations in HR + /
HER2- MBC, highlighting the potential utility of FFPE biopsy samples as a viable alternative or complementary 
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approach to LB for mutation detection, particularly in resource-limited settings where access to ctDNA analysis may 
be constrained.

Keywords ESR1 mutations, Metastatic breast cancer (MBC), Endocrine therapy resistance, FFPE tissue biopsy, ctDNA, 
CDK4/6 inhibitors, SERDs

Introduction
Mutations in ESR1, the gene encoding for the estro-
gen receptor (ER) alpha, represent a major mechanism 
of resistance to endocrine therapy (ET) in patients with 
hormone receptor-positive (HR +)/HER2- breast can-
cers [1–3]. In the metastatic setting, molecular test-
ing for ESR1 mutational status is required for treatment 
selection with elacestrant, a novel oral selective estrogen 
receptor degrader (SERD) [4–6]. The approval of this 
drug was based on the findings of the EMERALD clinical 
trial, which showed that women with pre-treated ESR1–
mutated (ESR1mut) HR + /HER2- metastatic breast 
cancer (MBC)—approximately 43% of cases—achieved 
significantly improved progression-free survival (PFS) 
with elacestrant compared to those treated with stand-
ard-of-care therapies [7]. Accordingly, guidelines now 
recommend routine testing for ESR1 mutations upon 
HR + /HER2- breast cancer recurrence or progression 
after ET, whether administered alone or in combination 
with CDK4/6 inhibitors [8–10]. Other next-generation 
SERDs, such as camizestrant, which are selected for 
patients based on ESR1 testing, are likely to enter clinical 
practice in the near future [11].

Since ESR1 mutations in HR + /HER2- MBC are an 
acquired resistance mechanism, rarely present in the 
primary tumor, circulating tumor DNA (ctDNA) test-
ing has been effectively employed in clinical studies and 
it is considered the optimal diagnostic strategy for novel 
SERDs treatment selection [12–14]. This is supported by 
the less invasive nature of liquid biopsy (LB) compared to 
tissue biopsy, its relatively high sensitivity, and its poten-
tial to address, at least in part, the challenges of tumoral 
heterogeneity [15–18]. However, in many healthcare 
environments, formalin-fixed paraffin-embedded (FFPE) 
tissue remains often easier to access than LB, especially 
in resource-limited settings where specialized logistics 
and infrastructure for processing and analyzing ctDNA 
may be unavailable [19].

Although FFPE biopsy samples from metastatic sites 
are routinely employed in clinical molecular diagnostics, 
their specific utility for ESR1 mutation detection remains 
largely underexplored. Liquid biopsy offers a non-inva-
sive alternative; however, its sensitivity can be limited 
in patients with low tumor DNA shedding or bone-
only metastases, where ctDNA levels may fall below the 
threshold for reliable detection [20–22]. In such cases, 

FFPE-derived DNA from metastatic tissue might repre-
sent a possible complementary source for ESR1 mutation 
analysis.

This raises a pragmatic question: can FFPE tissue serve 
as a reliable adjunct to liquid biopsy in the molecular 
testing of ESR1? This study aims to address this gap by 
characterizing the ESR1 mutational landscape through 
next-generation sequencing (NGS) on archival FFPE 
biopsy samples obtained from metastatic sites in HR + /
HER2-negative MBC patients who have progressed on 
ET and CDK4/6 inhibitor therapies.

Materials and methods
Study design and data acquisition
The study was conducted in accordance with the Declara-
tion of Helsinki and received approval by the Institutional 
Review Board (IRB) of the European Institute of Oncol-
ogy (IEO) IRCCS, Milan, Italy (approval #UID3472); In 
compliance with the EU General Data Protection Regu-
lation (GDPR), all information regarding the recruited 
patients were pseudo-anonymized [23]. The study char-
acterized the ESR1 mutational status in a retrospective 
cohort of patients with HR + /HER2- MBC who devel-
oped resistance to the combination of ET and CDK4/6 
inhibitor therapy in the pre-elacestrant era (April 
2019-November 2023). All analyses were performed on 
FFPE biopsy samples from metastatic sites collected at 
the time of disease progression following CDK4/6 inhibi-
tor therapy. Molecular testing was performed using a 
targeted NGS approach (Supplementary Methods S1) 
at four referral Centers (Supplementary Figure S1): IEO; 
University of Naples Federico II, Naples, Italy (Federico 
II); Policlinico University Campus Bio-Medico, Rome, 
Italy (Campus); and Policlinico Umberto I, Rome, Italy 
(Policlinico). Adopted NGS assays are: the Oncomine 
Comprehensive Assay (OCA, ThermoFisher) v3 (IEO and 
Campus), the Oncomine Precision Assay (OPA, Ther-
moFisher) (Federico II), and the FoundationOne®CDx 
test (Foundation Medicine) (Policlinico), as summarized 
in Table 1.

Statistical analyses
Descriptive analyses were conducted to summarize the 
demographic and clinical characteristics of the patient 
cohort, as well as treatment patterns. Continuous 
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variables were characterized using mean and/or median, 
with normality assumption assessed via the Shapiro–Wilk 
test. For non-normally distributed variables, the median 
and interquartile range (IQR) were reported. Categori-
cal variables, including the site of visceral metastases and 
ESR1 mutation status, were presented as frequencies and 
percentages. Comparative analysis using t-tests, Mann–
Whitney U tests, or chi-square tests, where appropriate, 
was conducted to ensure the comparability of groups 
based on ESR1 mutation status. A p-value less than 0.05 
was considered statistically significant. All statistical 
analyses were conducted using Statistics for Data Analy-
sis, formerly SPSS, (version 29.0.1.0). Detailed code and 
analysis scripts are available upon request to facilitate 
transparency and reproducibility.

Results
Clinicopathologic features of patients with ESR1 mutation 
detected in the metastatic sites
A total of 38 patients with HR + /HER2- MBC were 
included in the analysis. The cohort had a median age 
of 51.5  years (range: 27–80  years), and a median PFS 
on CDK4/6 inhibitors of 15.70  months (range: 3.17–
45.83  months). Inclusion was based on the availability 
of adequate residual FFPE tissue in our archives, defined 
as a minimum of five unstained Sects. (5 µm thick) with 
at least 10% estimated tumor cell content, as assessed 
by a pathologist. Most patients exhibited consistent 
ER expression (≥ 10% positive tumor cells) at diagnosis 
(n = 36; 94.7%) and were PgR-positive (n = 29; 76.3%). 
HER2 expression was negative in all cases, with n = 24 
patients (63.2%) classified as HER2-low (IHC score 1 + or 
2 + /ISH-negative). NGS revealed n = 25 ESR1 muta-
tions in n = 24 patients (63.2%), including one case with 
dual mutations in the gene. A significant difference in 
age distribution was observed between the ESR1mut and 
ESR1wt groups (median age: 47.0 vs. 54.5 years; p = 0.04), 
with ESR1mut patients being significantly younger. No 
substantial differences were identified in ER, PgR, or 
HER2 expression between ESR1mut and ESR1wt groups. 

Interestingly, none of the two patients with ER-low pri-
mary tumors showed ESR1 mutations in their metasta-
ses post-ET progression. In our cohort, PFS on CDK4/6 
inhibitors showed a broadly overlapping distribution 
between patients with ESR1wt and those with ESR1mut. 
Specifically, the ESR1wt group had a PFS range of 4.27 to 
45.00 months, with a median of 16.87 months, while the 
ESR1mut group exhibited a range of 3.17 to 45.83 months 
and a median of 15.70 months. Although the median PFS 
was slightly shorter in the ESR1mut group, the difference 
was modest and not suggestive of a clinically meaning-
ful impact. Given the substantial overlap in ranges and 
the limited difference in medians, no significant differ-
ence in PFS is evident between the two groups based on 
these descriptive statistics alone. Regarding the site of 
recurrence after ET, liver metastases were the most fre-
quent biopsy sites, equally represented in both ESR1mut 
(n = 12; 50.0%) and ESR1wt (n = 7; 50.0%) groups. Lymph 
node recurrence was observed in n = 3 ESR1mut patients 
(12.5%) compared to n = 1 ESR1wt patient (7.1%), while 
contralateral breast recurrence occurred in n = 2 patients 
from each group (ESR1mut, 8.3%; ESR1wt, 14.3%). 
Considering the overall clinical history of the patients 
included in this study, lung recurrence was significantly 
more frequent in the ESR1mut group (n = 8; 33.3%) com-
pared to the ESR1wt group (n = 1; 7.1%). Similarly, lymph 
node recurrence was higher in the ESR1mut group than 
in the ESR1wt group (n = 16; 66.7% vs. n = 8; 57.1%). 
These findings emphasize the heterogeneity between 
ESR1mut and ESR1wt HR + /HER2- MBC. The clinico-
pathologic features of the patients included in this study, 
according to ESR1 status, are summarized in Table 2.

Frequency and type of ESR1 alterations and co‑mutations 
in other actionable genes
The majority of ESR1 aberrations were point mutations 
(n = 22; 88.0%) and were predominantly located in exon 
10 of the reference transcript (NM_001122742), as shown 
in Table 3.

The most common mutations were distributed as fol-
lows: p.D538G (n = 10; 45.5%), p.Y537S (n = 6; 27.2%), 
p.Y537N (n = 2; 9.0%), p.Y537C (n = 1; 4.5%), p.L536P 
(n = 1; 4.5%), p.E380Q (n = 1; 4.5%), and p.T140K (n = 1; 
4.5%). Additionally, one V422del, one ESR1-CCDC170 
pathological gene fusion, and one ESR1 amplification, 
were detected among the selected cases. The distribution 
of ESR1 mutations according to the biopsy sites revealed 
that 50% of ESR1 mutations were present in the meta-
static deposits to the liver (Fig. 1).

In addition to ESR1, mutations in other cancer genes 
were detected, including n = 8 PIK3CA hotspot mutations 
identified in n = 6 patients, representing 15.8% of the 
entire cohort (Table 4). Additionally, mutations in AKT1, 

Table 1 Type of NGS assay used to test the FFPE metastatic 
samples according to the participating centers

IEO European Institute of Oncology, Milan Policlinico, Policlinico Umberto I, 
Rome Campus, Policlinico University Campus Bio-Medico, Rome Federico II, 
University of Naples Federico II, Naples OCA, Oncomine Comprehensive Assay v3 
(ThermoFisher), OPA Oncomine Precision Assay (ThermoFisher)

Center (nr. of patients) NGS Assay

IEO (22) OCA

Policlinico (8) FoundationOne®CDx

Campus (7) OCA

Federico II (1) OPA
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MTOR, and/or PTEN were detected in n = 3 patients, 
accounting for 7.9% of the cases. Altogether, 41.6% of 
tumors (n = 10 patients) with ESR1 mutations exhibited 
alterations in the PI3K-Akt-mTOR pathway. Beyond the 
PI3K pathway, the ESR1mut group also exhibited a range 
of other significant concurrent gene alterations, including 
TP53, EGFR, MYC, AR, MDM4, and IGF1R. Additional 
mutations were found in growth factor signaling pathway 
(FGFR4 and FGF19), cell cycle progression regulation 
(CCND1 and CCND3), key tumor suppressors (RB1), 
DNA damage response and repair mechanism (CHEK2, 
MLH1, MSH2, STK11, and RAD50).

Discussion
In this study, we presented previously unavailable data on 
rising ESR1 mutations in metastatic deposits at the time 
of disease progression on endocrine therapy (ET) and 
CDK4/6 inhibitor therapy in HR + /HER2- breast can-
cer. Our findings demonstrate that FFPE samples from 
metastases can serve as a valuable tool for informing 
treatment decisions with novel SERDs, complementing 

Table 2 Clinicopathologic characteristics and sites of recurrence of HR + /HER2-MBC patients by ESR1 mutation status

ER estrogen receptor, PgR progesterone receptor

ESR1mut (n = 24; 63.2%) ESR1wt (n = 14; 36.8%) Total (n = 38) p‑value

Age at diagnosis, range (median)

27–80 (47.0) 33–72 (54.5) 27–80 (51.5) 0.04

ER, n (%)

 Low 0 2 (14.3) 2 (5.3)

 Positive 24 (100) 12 (85.7) 36 (94.7)

PgR, n (%) 0.59

 Positive 19 (79.2) 10 (71.4) 29 (76.3)

 Negative 5 (20.8) 4 (28.6) 9 (23.7)

HER2, n (%) 0.20

 Low 17 (70.8) 7 (50.0) 24 (63.2)

 Negative 7 (29.2) 7 (50.0) 14 (36.8)

Site of recurrence after disease progression (biopsy site), n (%) 0.99

 Liver 12 (50.0) 7 (50.0) 19 (50.0)

 Contralateral breast 2 (8.3) 2 (14.3) 4 (10.5)

 Lymph node 3 (12.5) 1 (7.1) 4 (10.5)

 Lung 2 (8.3) 1 (7.1) 3 (7.9)

 Bone 2 (8.3) 1 (7.1) 3 (7.9)

 Other 3 (12.5) 2 (14.3) 5 (13.2)

Sites of recurrence during the overall patients history, n (%) 0.71

 Liver 12 (50.0) 8 (57.1) 20 (52.6)

 Contralateral breast 2 (8.3) 2 (14.3) 4 (10.5)

 Lymph node 16 (66.7) 8 (57.1) 24 (63.2)

 Lung 8 (33.3) 1 (7.1) 9 (23.7)

 Bone 15 (62.5) 9 (64.3) 24 (63.2)

 Other 5 (20.8) 3 (21.4) 8 (21.1)

Table 3 Type and genomic location of ESR1 alterations detected 
in FFPE samples

n (%)

Total number of ESR1 alterations 25 (100)

Point mutations 22 (88.0)

 p.T140K, c.419C > A (E3) 1 (4.5)

 p.E380Q, c.1138G > C (E7) 1 (4.5)

 p.L536P, c.1607 T > C (E10) 1 (4.5)

 p.Y537N, c.1609 T > A (E10) 2 (9.0)

 p.Y537S, c.1610A > C (E10) 6 (27.2)

 p.Y537C, c.1610A > G (E10) 1 (4.5)

 p.D538G, c.1613A > G (E10) 10 (45.5)

Indels

 V422del (E8) 1 (4.0)

Rearrangements

 ESR1-CCDC170 (E2-E10) 1 (4.0)

Amplifications

 CNV 5.98 1 (4.0)
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ctDNA testing or providing an alternative in cases where 
LB is unavailable.

The identification of ESR1 mutations in 63% of 
patients, as revealed by our NGS analyses, underscores 
a high prevalence of these alterations in this specific 
clinical setting. When comparing this frequency to other 
studies, the PADA-1 trial reported a prevalence of ESR1 
mutations in approximately 28% of patients with HR + /
HER2- MBC treated with first-line aromatase inhibi-
tors and CDK4/6 inhibitors, as detected through LB [24, 

25]. Similarly, the EMERALD trial found ESR1 muta-
tions in 43% of pre-treated patients via ctDNA analy-
sis [7, 26]. The relatively higher prevalence observed 
in our study may be attributed to differences in patient 
populations, detection methods, and sample sources, 
as our study focused on FFPE biopsies from metastatic 
sites, while the PADA-1 and EMERALD trials relied on 
ctDNA [27]. In the BOLERO-2 trial, conducted before 
the widespread use of CDK4/6 inhibitors, ESR1 muta-
tions were detected in 29% of patients using ddPCR [28, 

Fig. 1 ESR1 mutation types and distribution across different recurrence sites after CDK4/6 inhibitor therapy. The figure highlights mutation 
types, their frequencies, the affected protein domains, and corresponding gene exons in patients with HR + /HER2- metastatic breast cancer, 
based on ESR1 testing conducted on FFPE tissue samples collected in the recurrence site. Mutation types are color-coded for clarity, as indicated 
in the accompanying legend
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29]. This lower prevalence may reflect differences in both 
the treatment landscape and detection methodology, as 
PCR-based sequencing has limited sensitivity compared 
to NGS in identifying diverse and low-frequency muta-
tions [3, 30–35]. Notably, a secondary analysis of the 
trial revealed a threefold increase in mutation prevalence 
among patients who had progressed on first-line therapy 
for metastatic disease (33%) compared to those initiat-
ing first-line treatment (11%), underscoring the impact 
of prior treatment on mutational evolution [29]. Taken 
together, the variability of ESR1 mutation rates in the lit-
erature could depend on the stage of disease, prior thera-
pies, type of samples used for testing (FFPE vs. ctDNA), 
and the sensitivity of the detection method [2, 36–41].

Mutations such as p.Y537S and p.D538G were the most 
frequently identified in our cohort, aligning with previ-
ous studies [3, 5, 14, 39, 42–45]. These mutations seem to 
be associated with distinct biological and clinical charac-
teristics [46]. For instance, p.Y537S demonstrates greater 
resistance to estrogen deprivation, tamoxifen, fulvestrant, 
and novel drugs like bazedoxifene and rintodestrant, 
compared to p.D538G, which underscores its role in 
treatment resistance [47–49]. Conversely, p.D538G is 
associated with enhanced metastatic potential, particu-
larly to the liver, and has been implicated in the activation 
of Wnt signaling, a pathway not typically upregulated by 
p.Y537S [50, 51]. Our findings support these distinctions, 
as we identified five cases of p.D538G mutations specifi-
cally within liver metastases, highlighting the potential 
link between this mutation and liver tropism [14, 52–54]. 
Interestingly, ESR1-CCDC170 gene fusion was identified 
in one case, a notable finding given its established role in 
ET resistance [55–57]. This fusion is particularly signifi-
cant because it involves the ligand-binding domain (LBD) 
of ESR1, a region known to confer resistance to AI and 
to diminish the clinical efficacy of both selective estro-
gen receptor modulators (SERMs) and SERDs [40, 42, 58, 
59]. The aberration leads to constitutive activation of ER 

signaling, independent of ligand binding, thereby driving 
resistance to ET [55]. Given the nature of this fusion and 
its recurrent presence in aggressive breast cancer sub-
types, it is plausible that the ESR1-CCDC170 alteration 
represents a constitutive event that may also be present 
in the primary tumor, preceding the selective pressure 
of therapy [60, 61]. Future studies investigating matched 
primary and metastatic tumor samples could clarify 
whether this fusion emerges de novo during progres-
sion or is an early, stable event driving the tumor’s ET-
resistant phenotype. One patient in our study exhibited 
dual ESR1 mutations, underscoring intra-patient molec-
ular heterogeneity in HR + /HER2- MBC. This highlights 
both the evolution of distinct subclones under the selec-
tive pressure of ET and the enhanced sensitivity of NGS 
in detecting rare or co-occurring alterations that may be 
overlooked by less comprehensive methods. Altogether, 
these findings emphasize the importance of profiling the 
full spectrum of ESR1 mutations to better understand 
their functional implications and optimize therapeutic 
strategies.

Our study revealed clinically significant differences in 
metastatic patterns associated with ESR1 mutation sta-
tus. While the prevalence of liver metastases was similar 
between the ESR1 mutant and wild-type groups (approx-
imately 50%), lung metastases were significantly more 
common in ESR1 mutant cases (33% vs. 7%). This con-
trasts with findings from a retrospective cohort of 3,388 
HR + /HER2- MBC patients, which reported a slightly 
higher prevalence of liver metastases in ESR1 mutant 
cases compared to wild-type [62]. The observed enrich-
ment of lung metastases—particularly in cases harboring 
the ESR1 D538G mutation—is intriguing and may reflect 
distinct biological behavior associated with specific 
ESR1 mutant subclones. This specific mutation has been 
associated with altered expression of genes involved in 
epithelial-to-mesenchymal transition (EMT), cell motil-
ity, and extracellular matrix remodeling, which could 

Table 4 Frequency and type of PIK3CA mutations according to ESR1 status

A total of n = 8 PIK3CA mutations was detected in n = 6 PIK3CA-mutant cases in the ESR1mut group

ESR1mut (n = 24) ESR1wt (n = 14) Total (n = 38)

PIK3CA mutations, n (%) 8 (33.3) 8 (57.1) 16 (42.1)

p.V344M, c.1030G > A (E5) 1 (12.5) 0 1 (6.3)

p.E542K, c.1624G > A (E10) 0 2 (25.0) 2 (12.6)

p.E545K, c.1633G > A (E10) 2 (25.0) 1 (12.5) 3 (18.8)

p.E545Q, c.1633G > C (E10) 1 (12.5) 0 1 (6.3)

p.H556Y, c.1666C > T (E11) 0 1 (12.5) 1 (6.3)

p.E726K, c.2176G > A (E14) 1 (12.5) 0 1 (6.3)

p.H1047R, c.3140A > G (E21) 2 (25.0) 3 (37.5) 5 (31.3)

p.H1047L, c.3140A > T (E21) 1 (12.5) 1 (12.5) 2 (12.6)
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enhance metastatic potential [63]. These features may 
facilitate preferential dissemination to and colonization 
of the lung, a site known to support ER-positive breast 
cancer metastases through specific stromal and immune 
interactions [64–67]. While speculative, these findings 
warrant further investigation into potential organ-spe-
cific tropism driven by ESR1 mutations.

Interestingly, our NGS analysis identified co-occurring 
mutations, particularly in PIK3CA, in approximately 
18% of cases, a rate higher than the 10–15% previously 
reported [68, 69]. Alterations in the PIK3CA/AKT1/
PTEN pathway are well-established predictive biomark-
ers for response to targeted therapies such as alpelisib, 
capivasertib, and inavolisib [34, 70–74]. The high rate 
of PIK3CA co-mutations (41.6%) in ESR1mut tumors 
observed in our cohort has significant implications in 
terms of treatment prioritization and sequencing. When 
both mutations are present, clinicians must determine 
whether to first target the ESR1 pathway with novel 
SERDs like elacestrant or the PI3K pathway with inhibi-
tors such as alpelisib, capivasertib, or inavolisib. This 
decision often depends on several factors including the 
patient’s prior treatment history, disease burden, symp-
tomatology, and comorbidities. For instance, patients 
with aggressive visceral disease and both mutations 
might benefit from prioritizing PI3K pathway inhibition 
for its potentially more rapid response, while those with 
indolent progression might first receive ESR1-directed 
therapy [75]. Although combination approaches target-
ing both pathways simultaneously could theoretically 
address dual resistance mechanisms, clinical evidence 
supporting such strategies is currently limited, and 
potential increased toxicity remains a concern. The opti-
mal sequencing or combination strategy remains unde-
fined and represents an important area for future clinical 
investigation. These findings underscore the need for 
comprehensive molecular profiling to identify actionable 
co-mutations that may influence treatment selection and 
highlight the importance of developing evidence-based 
algorithms to guide sequential or combination therapy in 
patients with multiple resistance mechanisms.

Despite the insights provided, the present work has 
several limitations that warrant discussion. First, the ret-
rospective design and reliance on archival FFPE biopsy 
samples may introduce selection bias, as only cases with 
sufficient tissue quality and quantity were included. This 
approach may not fully represent the broader HR + /
HER2- MBC population. Second, our sample size was rel-
atively small (n = 38), which may limit the generalizability 
of the findings, particularly regarding the prevalence of 
co-mutations such as PIK3CA and ESR1 or rare altera-
tions like ESR1-CCDC170 fusions. Larger studies are 
needed to validate the observed rates of these alterations 

and their potential clinical implications. Third, while 
NGS provides high sensitivity and broad mutation cov-
erage, the study was unable to directly compare its per-
formance with other diagnostic methods, such as ctDNA 
analysis via LB or ddPCR, which may have influenced 
the detection rates and the observed mutation spectrum. 
Additionally, the lack of paired primary and metastatic 
tumor samples precluded an analysis of how specific 
alterations emerge or evolve under therapeutic pressure. 
This limits our ability to distinguish between early consti-
tutive events and acquired resistance mechanisms during 
treatment progression. Future studies integrating multi-
omics approaches and longitudinal data are essential to 
address these limitations and refine therapeutic strategies 
for HR + /HER2-negative MBC.

Conclusions
This study provides now data on the prevalence and clini-
cal relevance of ESR1 mutations in HR + /HER2- MBC, 
emphasizing the potential of FFPE biopsy samples as an 
alternative or complementary tool to LB for mutation 
detection in resource-limited settings. NGS on FFPE 
tissue biopsies taken at the time of disease progression 
allowed us to identify a high frequency of ESR1 muta-
tions and co-occurring alterations, including PIK3CA 
mutations, which underscore the complexity of resist-
ance mechanisms and the importance of comprehensive 
mutational profiling. The distinct metastatic patterns 
associated with ESR1 mutations, such as the higher prev-
alence of lung metastases, and the identification of rare 
alterations like ESR1-CCDC170 gene fusions and dual 
ESR1 mutations, underscore the importance of incor-
porating comprehensive mutational profiling into rou-
tine clinical practice to guide more tailored and effective 
treatment strategies. Future prospective studies integrat-
ing matched primary and metastatic tumor samples and 
longitudinal analyses are essential to validate these obser-
vations and further inform therapeutic decisions in this 
evolving landscape.
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