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Background
Breast cancer is now the most diagnosed cancer globally, 
accounting for one-eighth of all cancer cases [1]. Accord-
ing to GLOBOCAN 2022, the most recent global cancer 
statistics available, it remains the most commonly diag-
nosed cancer in women, with 2.3 million new cases and 
over 666,000 deaths worldwide, with projections indi-
cating the overall cancer burden will increase by 77% by 
2050 [2]. This emphasizes the importance of the early 
detection and effective treatment of breast cancer.

The Nottingham histologic grade (Elston-Ellis modifi-
cation of the Scarff-Bloom-Richardson grading system) 
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Abstract
Background The Nottingham histologic grade is crucial for assessing severity and predicting prognosis in breast 
cancer, a prevalent cancer worldwide. Traditional grading systems rely on subjective expert judgment and require 
extensive pathological expertise, are time-consuming, and often lead to inter-observer variability.

Methods To address these limitations, we develop an AI-based model to predict Nottingham grade from whole-
slide images of hematoxylin and eosin (H&E)-stained breast cancer tissue using a pathology foundation model. From 
TCGA database, we trained and evaluated using 521 H&E breast cancer slide images with available Nottingham scores 
through internal split validation, and further validated its clinical utility using an additional set of 597 cases without 
Nottingham scores. The model leveraged deep features extracted from a pathology foundation model (UNI) and 
incorporated 14 distinct multiple instance learning (MIL) algorithms.

Results The best-performing model achieved an F1 score of 0.731 and a multiclass average AUC of 0.835. The 
top 300 genes correlated with model predictions were significantly enriched in pathways related to cell division 
and chromosome segregation, supporting the model’s biological relevance. The predicted grades demonstrated 
statistically significant association with 5-year overall survival (p < 0.05).

Conclusion Our AI-based automated Nottingham grading system provides an efficient and reproducible tool for 
breast cancer assessment, offering potential for standardization of histologic grade in clinical practice.
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is a key prognostic classification used to evaluate breast 
cancer [3]. It quantifies the severity of cancer based on 
the tumor’s tubularity, nuclear pleomorphism, and 
mitotic count [4, 5]. It is a grading system recommended 
by various international professional organizations such 
as the World Health Organization (WHO), the American 
Joint Committee on Cancer (AJCC), the European Union 
(EU), and the Royal College of Pathologists (UK RCPath) 
[6]. Despite the common use of the Nottingham Grading 
System (NGS), the process requires expert knowledge, is 
time-consuming, and can be subject to inter- and intra-
observer variability [7]. These issues highlight the need 
for approaches that are more automated and objective.

Advances in artificial intelligence (AI) and machine 
learning have greatly improved digital image analysis 
in pathology. Deep learning algorithms now match or 
exceed expert pathologists in analyzing histopathological 
slides and automating tasks like lymph node metastasis 
detection and Ki67 scoring in breast cancer, improving 
diagnostic reproducibility [8].

In particular, the field of histopathology, image analy-
sis creates the possibility of improving the accuracy and 
efficiency of diagnosis owing to the emergence of foun-
dational models, such as Lunit DINO and UNI [9–13]. 
Wang et al. first proposed the DeepGrade model to pre-
dict the Nottingham grade using deep learning, which 
was developed specifically to improve prognostic power 
by reclassifying patients in the intermediate-risk group 
(grade 2) [14]. Jaroensri et al. used a deep learning system 
to predict the pathological grade components of mitotic 
count, nuclear polymorphisms, and tubular body forma-
tion separately, with high agreement for each compo-
nent [15]. Wetstein et al. focused on distinguishing low/
intermediate grades (grades 1 and 2) from high grades 
(grade 3) using a deep learning model based on multiple-
instance learning (MIL) and ResNet-34 [16]. Sharma et 
al. focused on predicting Nottingham grades, specifi-
cally grades 1 and 3, using deep learning [17]. Although 
attempts have been made to predict Nottingham scores 
using AI-based tools, these studies were limited in their 
ability to effectively distinguish between grades 1 and 2. 
This indicates that there is still room for improvement in 
predicting Nottingham scores using existing approaches, 
particularly the lack of sophisticated predictions for 
clearly distinguishing between grades 1 and 2. Therefore, 
there remains a need to improve the prediction of Not-
tingham scores using AI-based tools.

In this study, we aimed to develop an AI model that can 
accurately predict the Nottingham grade from whole-
slide images of hematoxylin and eosin (H&E)-stained 
breast cancer tissues. We introduce a novel methodology 
that combines MIL and self-supervised learning (SSL) to 
propose a model that can predict all Nottingham grades 
(grades 1, 2, and 3) in a unified manner. In particular, 

unlike previous studies, we attempted to clearly distin-
guish the boundaries between the grades and compared 
the UNI-foundation model with the ResNet-18 model to 
improve the prediction accuracy for each grade. Based on 
the predicted grades, we investigated the clinical utility of 
the automated cancer grading system through a review 
by an expert pathologist. We validated how AI-assisted 
histologic grade prediction correlates with patient sur-
vival outcomes. Furthermore, we analyzed the features of 
genomic data based on this histological prediction model 
using a multiomics approach.

Methods
Data source and patient selection
We used The Cancer Genome Atlas Program (TCGA) 
breast invasive carcinoma (BRCA) dataset of 1050 
patients with invasive breast cancer from TCGA through 
the Genomic Data Commons Data Portal [18–20]. After 
quality review of digitized whole-slide images (WSIs) 
for female breast cancer patients, a total of 1,118 H&E-
stained diagnostic slides from 1,050 patients were 
selected for the final analysis.

Male breast cancer cases (13 WSIs from 12 patients) 
and slides with unrecognizable tumor regions (2 WSIs 
from 2 patients) were excluded from the analysis. As 
one patient may have more than one WSI, the number 
of patients remained unchanged despite the exclusion of 
slides.

Figure 1 A illustrates the inclusion and exclusion crite-
ria applied to the initial TCGA-BRCA dataset, as well as 
the composition of the final cohorts used for analysis. The 
clinical data for each patient (such as age at diagnosis, 
survival status, and follow-up duration) were obtained 
from Firehose Legacy, Pan-Cancer Atlas in Genomic 
Data Commons, and cBioPortal [21, 22]. There were 
521 slides from patients with a recorded Nottingham 
histologic grade and 597 slides from patients without a 
recorded grade. Additionally, we selected 646 patients for 
whom RNA-seq expression data were available.

To assess the generalizability of our model beyond the 
TCGA-BRCA dataset, we employed an external valida-
tion cohort derived from the publicly available BReAst 
Carcinoma Subtyping (BRACS) dataset [23]. BRACS 
consists of a large collection of H&E-stained WSIs anno-
tated for various breast lesion types and was developed 
through a collaborative effort among IRCCS Fondazione 
Pascale, Institute for High Performance Computing and 
Networking (ICAR)- National Research Council (CNR), 
and International Business Machines (IBM) Research 
Zurich. The dataset includes representative breast tis-
sue samples from multiple diagnostic categories, such 
as benign lesions, atypical hyperplasia, ductal carci-
noma in situ (DCIS), and invasive carcinoma (IC). For 
our study, we selected only the WSIs classified as IC, as 
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they are most relevant to the prediction of Nottingham 
histologic grade. From the IC-labeled subset, 132 WSIs 
were initially identified. After quality assessment by an 
expert pathologist, 4 WSIs were excluded due to poor 
slide quality, resulting in a final external validation set of 
128 WSIs. These slides were used to evaluate the model’s 
performance in predicting Nottingham grade in an inde-
pendent cohort. Figure  1B illustrates the data selection 
process for the BRACS cohort.

Collection method for Nottingham histological grade in 
TCGA-BRCA and BRACS dataset
Asaoka et al. (2020) reviewed pathology reports from the 
TCGA-BRCA project using the Text Information Extrac-
tion System cancer research network [24]. Pathology 
reports of 1,046  H&E-stained tissue sections were ana-
lyzed to obtain Lymphovascular invasion (LVI) status and 
Nottingham histology scores [25]. Some histologic scores 
were obtained by utilizing histologic scores recorded 
in the literature, and those that were not included were 
obtained by manually reviewing pathology reports, 
resulting in a total of 521 histologic scores. A total of 
521 slides with recorded Nottingham grades were used 
to build the deep learning model. Each image was pro-
cessed as an independent sample and split into training, 
validation, and evaluation sets at a precise 6:2:2 ratio. 
Data partitioning was performed using stratified random 
sampling to maintain evenly distributed characteristics. 
In the BRACS dataset, Nottingham histologic grades 
were not originally provided. Therefore, all selected WSIs 
in the external validation cohort were independently 
reviewed and graded by an expert pathologist according 
to the standard Elston-Ellis modification of the Scarff-
Bloom-Richardson system. Final histologic scores for 

both datasets are provided in Supplementary material, 
Tables S1 (TCGA-BRCA) and S2 (BRACS).

Histopathology image preprocessing and feature 
extraction
In the feature extraction phase, we used the UNI-foun-
dation model, which is based on a ViT-L/16 architecture 
and trained by DINOv2 (Fig.  2B) [26, 27]. This model 
extracts 1,024 dimensional features from each patch. 
Additionally, for a performance comparison, we used 
the ImageNet-pretrained ResNet-18 model [28], which 
extracts 512 dimensional features for each patch.

For histopathological image segmentation, we used 
the Clustering-constrained Attention Multiple Instance 
Learning (CLAM) model, following parameter settings 
from previous studies, to extract tissue-containing tiles 
while excluding background and noise [29]. Tissue seg-
mentation was performed using thresholding in the Hue, 
Saturation, Value (HSV) color space, and non-tissue or 
low-quality patches were removed, which also helps min-
imize potential batch effects by reducing slide-level vari-
ability. Extracted patches of a fixed size (224 × 224 pixels) 
were stored as HDF5 files for each patient to ensure effi-
cient data management and processing for deep learning 
model training, as shown in Fig. 2A.

Development of a Nottingham score prediction model 
using multiple instance learning methods
We utilized the Attention-Challenging Multiple Instance 
Learning (ACMIL) method to train and build the model. 
As illustrated in Fig. 2C, this methodology integrates two 
main techniques, multi-branch learning and stochastic 
top-K instance masking, which focus on suppressing the 
concentration of attention and mitigating overfitting [30]. 

Fig. 1 Flowchart of patient and slide selection from the TCGA-BRCA and BRACS dataset. (A) TCGA-BRCA cohort selection for model development. (B) 
BRACS cohort selection for external validation
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These techniques are designed to address limitations in 
conventional MIL models, which often focus attention 
excessively on a small subset of instances, potentially 
leading to biased learning. The model was primarily 
trained using the standard multi-class cross-entropy loss 
function:

 Lb = −
∑ C

i=1yilog (pi)  (1)

where yi is the one-hot encoded ground truth label and 
pi is the predicted probability for class i, obtained via 
softmax. To further enhance the robustness and gener-
alization of the model, ACMIL incorporates two addi-
tional loss components derived from its multi-branch 
architecture. The first is the semantic regularization loss 
Lp, which ensures consistent classification across mul-
tiple attention branches and is defined as:

 Lp = − 1
M

∑
M
i=1ylogŷi + (1 − y) log (1 − ŷi)  (2)

where M  denotes the number of attention branches and 
ŷi is the prediction from the i-th branch. The second is 
the diversity regularization loss Ld, which promotes fea-
ture diversity between attention branches by minimizing 
the cosine similarity between attention vectors. This loss 
is defined as:

 Ld = 2
M(M−1)

∑
M
i=1

∑
M
j=j+1cos (α i, α j)  (3)

where α i denotes the attention vector of the i-th 
branch. These three loss components are combined into 
the final composite loss function as follows:

 L = Lb + Lp + Ld  (4)

In addition to loss regularization, ACMIL employs sto-
chastic top-K instance masking to prevent the model 
from over-relying on a fixed set of highly attended 
instances. In this approach, instances with the top-K 
attention scores are selected, and a portion of them is 
randomly masked based on a predefined probability. 
The remaining attention scores are then normalized to 
maintain a valid probability distribution, thereby improv-
ing the generalization ability of the model. The model 
does not apply a hard attention threshold to define key 
instances; instead, predictions are computed by aggre-
gating all instance features weighted by their atten-
tion scores, allowing key instances to emerge implicitly. 
To validate the performance of ACMIL, we performed 
a performance comparison analysis with the exist-
ing MIL models CLAM-SB, CLAM-MB, Transformer 
based Correlated multiple instance learning (Trans-
MIL), Dual-stream multiple instance learning (DSMIL), 
Double-tier feature distillation multiple instance learning 

Fig. 2 Comprehensive Workflow for Histopathological Analysis. (A) Displays segmentation of histopathological images using the CLAM model, isolating 
tissue-only tiles and dividing them into 224 × 224 pixel patches. (B) The UNI model with DINO, pretrained using self-supervised learning (SSL), extracts 
1,024-dimensional features at the patch level, which are subsequently aggregated within the MIL framework using attention-based selection. (C) The 
model predicts the Nottingham grade using a combination of multi-branch learning, stochastic top-K instance masking, and attention mechanisms. The 
results are visualized using survival analysis, heatmap visualization, and gene ontology analysis
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(DTFD-MIL), and Attention-based multiple instance 
learning (ABMIL) [29, 31–34].

All models were implemented based on the UNI model 
and ResNet-18 architectures. Training was conducted for 
100 epochs using the AdamW optimizer with a weight 
decay of 0.00001. The initial learning rates were set to 
0.0001 for UNI model and 0.0002 for ResNet-18, and a 
cosine learning rate schedule was applied to progressively 
decrease the learning rate over the training epochs. Due 
to the variable number of instances per bag in the MIL 
framework, the batch size was set to 1. During train-
ing, we randomly selected 70–100% of patch features 
to achieve an augmentation effect. All hyperparameters 
used in this study were adopted from prior MIL-based 
digital pathology studies without additional tuning.

Statistical analysis
Model performance was evaluated using Area Under the 
Receiver Operating Characteristic Curve (AUROC) and 
F1 scores calculated on the validation and test datas-
ets. AUROC measures the model’s ability to distinguish 
between Nottingham histologic grades, while the F1 
score assesses accuracy and sensitivity. For the valida-
tion and testing phases, the model in the epoch with the 
highest F1 score was selected and saved from the training 
results over 100 epochs.

To evaluate generalizability, external validation was 
performed using an independent cohort from the BRACS 
dataset, with AUROC and F1 scores similarly calculated. 
To further assess the agreement between model-pre-
dicted grades and pathologist-assigned grades, Cohen’s 
kappa coefficients were calculated for each grade class in 
both TCGA-BRCA and BRACS datasets.

Survival analysis evaluated the impact of Nottingham 
grade on overall survival (OS) and the model’s accuracy 
in predicting it, focusing on 5-year survival, a key met-
ric in breast cancer prognosis [35]. We tested whether 
predicted survival differences for each grade were statis-
tically significant. Survival time was defined as the time 
from diagnosis to death from any cause; patients with 
time from diagnosis to death recorded as zero or those 
with no follow-up time information (n = 4) were excluded 
from the analysis. Survival data were analyzed using the 
Kaplan-Meier method, and differences between survival 
curves were assessed using the log-rank test. Hazard 
ratios for each grade were estimated by univariate Cox 
proportional hazards regression analysis using the Not-
tingham histologic grade as a variable. Analyses were 
performed as survival analyses for patients with a Not-
tingham histologic grade recorded by the pathologist 
and survival analyses using the grade predicted by the 
model because the Nottingham histologic grade was not 
recorded.

For multivariate survival analysis, a Cox proportional 
hazards regression model was constructed incorporating 
key clinical covariates including tumor size (T1, T2, T3/
T4), Estrogen receptor (ER), Progesterone receptor (PR), 
and human epidermal growth factor receptor 2 (HER2) 
status, and age. Age was modeled both as a continuous 
and as a categorical variable using the median (≤ 58 years 
vs. > 58 years). AI-predicted Nottingham grades were 
included as dummy variables with grade 1 as the refer-
ence group. Tumor stage was similarly encoded using T1 
as the reference. Proportional hazard assumptions were 
tested, and L2 penalization was applied to stabilize coef-
ficient estimates.

Heatmap visualization
Heatmap visualization was performed to highlight key 
areas of the tissue slide for each Nottingham grade, based 
on attention scores assigned to each patch. Attention 
scores were calculated using a neural network architec-
ture with gating mechanisms, including tanh and sigmoid 
functions, to regulate the flow of information. The calcu-
lated attention scores were normalized using a softmax 
function to allow comparisons across all patches. The 
normalized attention values were visualized on a heat 
map, with areas of high attention represented by brighter 
colors.

Gene ontology analysis
We performed gene ontology (GO) analysis using RNA-
seq data from 646 TCGA patients, excluding the training 
cohort, including both patients with pathologist-assigned 
grades in the validation/test sets and those without such 
annotations, to explore gene expression patterns asso-
ciated with model-predicted histologic grades. RNA-
seq data were normalized using the Trimmed Mean of 
M-values method to allow for comparisons between 
experiments, and log-transformed counts were estimated 
using the Voom method to make the data suitable for 
analysis. Genes with low expression were filtered using 
the count per million (CPM) method, which was applied 
only to genes with a CPM value > 1 in more than 25% of 
the samples. This process resulted in 14,861 genes being 
selected for the final analysis. Additionally, for each Not-
tingham histologic grade 1–3 predicted by the model, 
we extracted the top 300 genes that were positively cor-
related and analyzed the genes associated with the pre-
dicted grade. We performed enrichment analysis on 
these gene lists using the DAVID web tool, focusing on 
Biological Processes ontology terms [36]. This assesses 
how well the model’s predictions match the actual gene 
expression patterns.
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Results
Patient characteristics
The patient characteristics of the dataset of 521 slides 
with recorded Nottingham histologic.

grades (n = 496) and 597 slides without recorded Not-
tingham histologic grades (n = 554) are summarized in 
Table 1. The median age of patients with recorded Not-
tingham grades was 58 years (range 27–90), while those 

without recorded grades had a median age of 59 years 
(range 26–90), with a significant age difference (p < 0.001). 
Regarding tumor grade distribution, among patients 
with recorded Nottingham grades, 14% had a low grade 
(grade 1), 46% had an intermediate grade (grade 2), and 
40% had a high grade (grade 3). Regarding the observed 
clinical stage, when comparing the distribution of clinical 
stages between the groups of patients with and without 
documented Nottingham histologic grades, stage II was 
the most commonly observed stage in both groups, but 
there were some differences in the overall distribution. In 
the group of patients with recorded Nottingham stages, 
the intermediate stage (stage II) was dominant, with 
similar proportions of low (stage I) and high (stage III) 
stages. By contrast, in the unrecorded group, more stage 
III cases and fewer stage I cases were observed. ER and 
HER status also differed between the two groups, with 
ER positivity being 78% in the recorded group and 69% 
in the unrecorded group, and HER2 positivity being 13% 
in the recorded group and 17% in the unrecorded group. 
Detailed patient characteristics are presented in Table 1.

In total, 521 slides from 496 patients with recorded 
Nottingham histologic grades were used to construct 
the model. They showed the highest proportion of inter-
mediate-grade tumors in the training set, with 145 cases 
(47%), whereas high-grade tumors represented 40% of 
the cases in each set. Similar patterns were observed in 
the validation and test sets, with no statistically signifi-
cant differences observed across all the sets (p = 1.00). 
The detailed distribution of the tumor grades is shown in 
Table 2.

The distribution of tumor grade and its component 
scores in the BRACS external validation cohort is sum-
marized in Table 3. Grade 2 tumors were the most com-
mon (44%), followed by grade 3 (36%) and grade 1 (20%). 
In terms of the component scores, the majority of cases 
had a tubular score of 3, a nuclear score of 2 or 3, and a 
mitotic score of 1.

Model performance comparison and selection
The performances of various MIL models were evalu-
ated using TCGA-BRCA datasets. The evaluation, which 
mainly centered on the F1-score and AUC metrics, 

Table 1 Overall patient characteristics by Nottingham grade 
presence
Patient characteristics With

Nottingham 
Grade

Without
Nottingham 
Grade

Total

N 496 554 1050
Age at biopsy
Median (Min-Max) 58(27–90) 59(26–90) 58(26–

90)
Tumor grade (n (%))
grade 1(3–5 points) 67(14) - -
grade 2(6–7 points) 229(46) - -
grade 3(8–9 points) 200(40) - -
Nuclear score (n (%))
1 31(6) - -
2 232(47) - -
3 233(47) - -
Tubular score (n (%))
1 24(5) - -
2 88(18) - -
3 384(77) - -
Mitotic score (n (%))
1 218(44) - -
2 130(26) - -
3 148(30) - -
Clinical stage (n (%))
I 106(21) 70(13) 176
II 288(58) 310(56) 598
III 96(19) 139(25) 235
IV 5(1) 13(2) 18
Unknown 1(1) 22(4) 23
ER status (n (%))
Positive 390(78) 381(69) 771
Negative 103(21) 125(23) 228
Indeterminate 1(0) 1(0) 2
Unknown 2(1) 47(8) 49
HER2 status (n (%))
Positive 65(13) 92(17) 157
Negative 263(53) 273(49) 536
Equivocal 113(23) 60(11) 173
Indeterminate 7(1) 4(1) 11
Unknown 48(10) 125(22) 173
The distribution of patient characteristics is stratified by the presence or 
absence of Nottingham grade. Included are demographic data (age at biopsy), 
tumor grade components (tumor grade, nuclear score, tubular score, and 
mitotic score), clinical staging, and biomarker status (ER and HER2). Age is 
expressed as median (range), while categorical variables are shown as counts 
and percentages

Table 2 Distribution of tumor grades in slides with Nottingham 
grade across training, validation, and test sets
Patient characteristics Train Validation Test p-value
N 314 103 104
Tumor grade (n (%)) 1.00
grade 1(3–5 points) 42(13) 14(14) 14(14)
grade 2(6–7 points) 145(47) 48(46) 48(46)
grade 3(8–9 points) 127(40) 41(40) 42(40)
The p-value, calculated using a chi-square test, shows no significant differences 
in tumor grade distributions across the datasets (p = 1.00)
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covered two main categories feature extractors: those 
pretrained with ImageNet and those pretrained with the 
proposed UNI model.

Among the models pretrained with ImageNet, CLAM-
SB, CLAM-MB, TransMIL, DSMIL, DTFD-MIL, and 
ABMIL were evaluated using the F1 score and AUC on 
the test dataset. The ABMIL and ACMIL models per-
formed particularly well. CLAM-SB performed well 
in validation, with an F1 score of 0.666 and an AUC of 
0.772; however, in testing, the F1 score was slightly lower, 
with an F1 score of 0.647 and an AUC of 0.768. The 

DSMIL and DTFD-MIL models exhibited consistent per-
formance metrics in the tests. Particularly, ACMIL with 
the UNI-pretrained feature extractor performed the best 
on the test set, with an F1 score of 0.731 and an AUC of 
0.835. The highest score for each class (grades 1, 2, and 
3) was determined as the final prediction class. In this 
process, each score was multiplied by a randomized con-
stant to obtain the final result. In the validation phase, 
it achieved an F1 score of 0.679 and an AUC of 0.819, 
whereas in the test set, it performed the best with an F1 
score of 0.731 and an AUC of 0.835, demonstrating the 
effectiveness of the UNI-pretrained feature extractor in 
improving MIL model performance.

The detailed performance metrics and data are listed in 
Table  4. The performance evaluation results of the final 
selected ACMIL model (using UNI-pretrained features) 
were further analyzed using the ROC curves (Fig.  3A) 
and confusion matrix (Fig.  4A) derived for each Not-
tingham histological grade. The model showed different 
predictive capabilities across grades, achieving AUCs of 
0.83 for grade 1, 0.77 for grade 2, and 0.90 for grade 3. 
Similarly, the confusion matrices demonstrated that the 
model achieved relatively high classification accuracy 
for grades 1 and 3, with slightly lower performance for 
grade 2. To evaluate the generalizability of the model, we 
additionally tested its performance on an independent 
external validation cohort from the BRACS dataset. The 
ROC curves and confusion matrices for this cohort are 
presented in Figs.  3B and 4B, respectively. The model 
achieved AUCs of 0.89 for grade 1, 0.70 for grade 2, and 
0.83 for grade 3 in the external validation. While the clas-
sification performance for grade 2 remained moderate, 
the model maintained robust predictive ability for grades 
1 and 3. These results indicate that the ACMIL model is 
capable of stratifying histologic grades in an independent 
cohort, supporting its applicability beyond the training 
dataset.

To further assess the agreement between the model 
predictions and pathologist-assigned grades, we addi-
tionally calculated Cohen’s Kappa scores for each Not-
tingham grade class in both TCGA-BRCA dataset and 
BRACS dataset. The results are summarized in Table  5, 
demonstrating moderate to substantial agreement in the 
TCGA dataset, with lower agreement observed for grade 
2 in the BRACS cohort. This highlights the model’s con-
sistency in predicting grades 1 and 3 across cohorts.

Survival analysis
We evaluated the OS of patients according to the NGS 
by comparing the graded survival based on pathologic 
classification and deep learning model prediction. Five-
year survival rates were calculated for both the pathol-
ogist-classified grades and ACMIL model-predicted 
grades, which served as important indicators of tumor 

Table 3 Patient characteristics in the BRACS external validation 
dataset
Patient characteristics BRACS dataset Total
Tumor grade (n (%)) 128
grade 1(3–5 points) 26(20)
grade 2(6–7 points) 56(44)
grade 3(8–9 points) 46(36)
Nuclear score (n (%)) 128
1 14(10)
2 57(45)
3 57(45)
Tubular score (n (%)) 128
1 6(5)
2 23(18)
3 99(77)
Mitotic score (n (%)) 128
1 67(52)
2 24(19)
3 37(29)
Summary of tumor grade and individual histologic component scores including 
nuclear, tubular, and mitotic scores for the 128 slides in the BRACS validation 
dataset

Table 4 Performance of MIL approaches using two pre-trained 
methods and metrics on TCGA-BRCA dataset
Pretrained 
Feature 
Extractor

Performance TCGA-BRCA

Validation Test

F1-score AUC F1-score AUC
ResNet18 
(ImageNet)

CLAM-SB 0.666 0.772 0.647 0.768
CLAM-MB 0.575 0.736 0.631 0.755
TransMIL 0.564 0.713 0.561 0.758
DSMIL 0.557 0.690 0.657 0.732
DTFD-MIL 0.647 0.757 0.607 0.755
ABMIL 0.624 0.759 0.637 0.783
ACMIL 0.633 0.773 0.734 0.797

UNI
(ViT-L/16, SSL)

CLAM-SB 0.651 0.797 0.705 0.805
CLAM-MB 0.674 0.808 0.702 0.817
TransMIL 0.700 0.826 0.702 0.817
DSMIL 0.710 0.767 0.709 0.755
DTFD-MIL 0.620 0.747 0.661 0.794
ABMIL 0.636 0.817 0.728 0.829
ACMIL 0.679 0.819 0.731 0.835

The performance of MIL methods is compared using ResNet18 and UNI models, 
evaluated by F1-score and AUC on the TCGA-BRCA validation and test datasets
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Fig. 4 Confusion Matrices for Nottingham Grade Classification in TCGA-BRCA and BRACS Datasets. (A) Confusion matrix from internal TCGA test set, 
showing the model’s classification performance across Nottingham grades 1, 2, and 3. (B) Confusion matrix from external BRACS validation set, illustrating 
the model’s generalizability in predicting Nottingham grades in an independent cohort

 

Fig. 3 ROC Curves for Nottingham Grade Classification. (A) ROC curves of model performance in the internal TCGA-BRCA test set. (B) ROC curves of 
model performance in the external BRACS validation set
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progression and patient survival for each grade. The sur-
vival curves according to the tumor grade, as classified by 
the pathologist, showed relatively high survival rates for 
each grade. The ACMIL model predicted 5-year survival 
rates of 79.9% for grade 1, 75.7% for grade 2, and 59.1% 
for grade 3, with a trend toward lower survival rates for 
higher grades. These results were statistically significant 
(p < 0.05), indicating that the model predictions tended to 
match the actual clinical outcomes. This analysis aimed 
to show that model-predicted grades can stratify survival 
outcomes, highlighting their clinical relevance even with-
out pathologist annotations. The log-rank test was used 
to assess whether the difference in survival between the 
graded patient populations was significant. This test was 
used to determine whether the OS curves for each of 
the three grades (1, 2, and 3) were significantly different. 
The survival curves based on pathologist classification 
(Fig. 5A) and those based on ACMIL model predictions 

(Fig. 5B) are shown. A comparison of the 5-year survival 
rates for each tumor grade is presented in Table 6.

To further assess the prognostic value of model-pre-
dicted Nottingham grades, we performed a multivariate 
Cox proportional hazards regression analysis, adjusting 
for tumor size, ER/HER2/PR status, and age. While the 
predicted grades did not retain statistical significance 
in the multivariate setting, the survival trends remained 
consistent with clinical expectations, with higher pre-
dicted grades associated with worse outcomes. These 
results indicate that model-derived grading captures 
prognostically relevant signals, although its independent 
predictive contribution may be influenced by other clini-
copathological factors. The detailed results are presented 
in Supplementary material, Tables S3.

Table 5 Agreement of model versus pathologist: Cohen’s kappa 
scores in TCGA-BRCA and BRACS datasets
Dataset Nottingham Grade Cohen’s Kappa (± SD)
TCGA-BRCA Grade 1 0.41 ± 0.10

Grade 2 0.51 ± 0.07
Grade 3 0.65 ± 0.05

BRACS Grade 1 0.46 ± 0.09
Grade 2 0.25 ± 0.09
Grade 3 0.43 ± 0.08

Cohen’s Kappa coefficients with standard deviations are presented for each 
grade class, indicating the level of agreement between the model and 
pathologist classifications

Table 6 Comparison of 5-year survival rates by tumor grade: 
pathologist vs. ACMIL model predictions
Outcome 5-year survival rate (% (95% CI)) p-value

Grade 1 Grade 2 Grade 3
OS
Pathologists 100.0 

(100.0–100.0)
90.6 
(77.1–96.3)

80.7 
(66.6–89.3)

0.1232

ACMIL model 79.9 
(74.3–84.4)

75.7 
(57.4–86.9)

59.1 
(38.0–75.1)

0.0173

The 5-year survival rates were estimated using the Kaplan-Meier method, while 
survival differences between tumor grades were tested using the log-rank test

Fig. 5 Kaplan-Meier Survival Curves for Breast Cancer Patients by Nottingham Grades: Pathologist vs. Deep Learning. (A) Kaplan-Meier survival curves for 
pathologist-classified Nottingham grades show a clear trend, with grade 1 having the highest survival probability, followed by grades 2 and 3, reflecting 
the expected relationship between grades and survival outcomes. (B) Kaplan-Meier survival curves for AI-predicted Nottingham grades align with clini-
cal expectations, showing grade 1 with the highest survival probability, grade 2 in the middle, and grade 3 with the lowest. Both graphs demonstrate 
consistent survival trends across Nottingham grades, with AI predictions closely matching clinical classifications
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Visualization and focused analysis of Nottingham grades 
through heatmaps
The ACMIL model was used to generate heatmaps of 
breast cancer tissue slides according to Nottingham 
grades 1, 2, and 3, with attention scores visualized as 
color changes reflecting histological features. The origi-
nal slide images were presented along with heat maps to 
show how the areas noted by the model corresponded 
to the actual pathological findings. For example, in Not-
tingham grade 1, a relatively uniform cellular structure 
and a small amount of microscopic cell proliferation were 
observed, which appeared as low-scoring areas in the 
heatmap of the model (Fig.  6A). By contrast, Notting-
ham Grade 2 showed a more irregular cell structure and 

an increase in microscopic cell proliferation, which was 
also reflected in the heatmap (Fig.  6B). In Nottingham 
grade 3, strong cell proliferation was observed along with 
a more irregular cell structure, which was reflected in the 
heatmap as high scoring areas (Fig.  6C). These results 
suggest that our prediction model can effectively distin-
guish the histological patterns associated with Notting-
ham grades. Furthermore, an expert pathologist reviewed 
the heatmaps and corresponding histologic slides, con-
firming that the attention regions identified by the model 
were consistent with clinically relevant histologic fea-
tures. While these heatmaps qualitatively demonstrate 
the interpretability of the model, we also provided a 
quantitative evaluation of model-pathologist agreement 

Fig. 6 Visualization of slides, heatmaps, and key regions for Nottingham grade. this figure illustrates the progression of histopathological features for 
Nottingham grades 1, 2, and 3 through original slides, corresponding heatmaps, and magnified grade-related regions: (A) Nottingham Grade 1: The 
original slide shows uniform cell structures. The heatmap highlights low-attention areas, reflecting minimal irregularities. The zoomed-in region confirms 
orderly tubular formations and low mitotic activity. (B) Nottingham Grade 2: The slide reveals moderately irregular structures. The heatmap shows mixed 
attention areas, indicating regions with moderate cellular pleomorphism and mitotic activity. The zoomed-in view corroborates an intermediate level 
of tubularity and nuclear atypia. (C) Nottingham Grade 3: The slide depicts highly irregular structures and significant cellular proliferation. The heatmap 
highlights intense attention areas, aligning with severe nuclear pleomorphism and high mitotic activity observed in the zoomed-in region. These visual-
izations demonstrate the AI model’s ability to focus on histologically relevant regions that align with Nottingham grading criteria
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using Cohen’s kappa statistics, as presented in Table 5, to 
support the reliability of the predicted grades.

Gene ontology analysis of biological processes related to 
Nottingham grade 3
GO analysis was performed to analyze the key biologi-
cal processes associated with Nottingham Grade 3 breast 
cancer tissues. Based on the gene expression data accord-
ing to the grade predicted using the ACMIL model, we 
identified statistically significant biological processes. 
The analysis showed that cell division, chromosome seg-
regation, and mitotic cell 

cycle pathways were prominently involved in grade 3. 
These processes reflect the aggressive and rapid growth 
properties of tumors and include important mechanisms 
involved in cancer progression. A detailed analysis is pre-
sented in Fig. 7. The gene expression analysis for grades 
1 and 2 can be found in (supplementary material, Figure 
S1).

Discussion
We utilized the MIL methodology to predict the Notting-
ham histological grade from H&E-stained slide images of 
patients with breast cancer. The AI-based model devel-
oped in this study demonstrated that among the MIL 
models with different architectures and training meth-
ods, the model trained using the proposed UNI-pre-
trained features performed the best and could effectively 
predict the Nottingham histologic grade. The model 
outperformed other models in terms of the F1 score and 
AUC metrics, marking a significant advance in breast 
cancer histological analysis.

Although previous studies have applied AI models 
to predict the Nottingham histologic grade, they often 
showed limitations in clearly distinguishing between 
grades, particularly between grades 1 and 2. In contrast, 

our model demonstrated improved accuracy and consis-
tency across all grades, addressing this key limitation in 
prior approaches.

Our model was able to predict cancer grades from Not-
tingham grades 1 to 3 with high accuracy and was suc-
cessful in clearly distinguishing the boundaries between 
grades. Our model showed good consistency and pre-
dictive power at the boundary between grades 1 and 2, 
which previous studies failed to distinguish accurately.

An important feature of this study is that it analyzed 
the effectiveness of different approaches in comparing 
and evaluating state-of-the-art models. Different MIL 
models, including the ACMIL model, are based on differ-
ent architectures, and a performance comparison among 
them allowed us to identify the most effective learning 
strategies. Particularly, the ACMIL model utilizes multi-
branch learning and stochastic top-K instance mask-
ing to achieve more sophisticated feature extraction and 
learning, which results in higher predictive accuracy and 
consistency compared with traditional MIL models.

Traditionally, the NGS relies heavily on the visual 
assessment of pathologists, which can lead to a lack of 
consistency in the assessment between observers or over 
time by the same observer. This study focused on mini-
mizing the subjectivity between pathologists, especially 
in the assessment of histological grades. The AI-powered 
automated model developed in this study eliminated 
this subjectivity and provided an objective, quantified 
assessment based on histological characteristics, signifi-
cantly improving consistency and reliability. By identi-
fying meaningful patterns in complex medical data and 
providing deeper insight into clinical outcomes, these 
automated tools can improve medical diagnosis and 
treatment methods. These consistent and accurate pre-
dictions of the Nottingham histologic grades allowed 
us to explore how they relate to patient prognosis. The 

Fig. 7 Key Biological Processes Associated with Nottingham Grade 3 Breast Cancer. The bar chart illustrates the key biological processes associated with 
Nottingham Grade 3 breast cancer, identified through gene ontology (GO) analysis. The most significant processes include cell division, chromosome 
segregation, and the mitotic cell cycle, reflecting the rapid and aggressive proliferation characteristic of Grade 3 tumors. Other notable processes, such 
as mitotic spindle organization, G2/M transition of the mitotic cell cycle, and mitotic cytokinesis, further highlight the enhanced mitotic activity observed 
in high-grade tumors. Additionally, processes like DNA replication and regulation of cyclin-dependent kinase activity underscore the genomic instabil-
ity and dysregulated cell cycle mechanisms typical of advanced breast cancer. These results provide biological insights into the distinct and aggressive 
nature of Nottingham Grade 3
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results showed that patients with lower grades (grade 
1) had higher survival rates, whereas those with higher 
grades (grade 3) had relatively lower survival rates. This 
confirms that pathological grade has a significant impact 
on patient prognosis and shows that AI models can sup-
port these important clinical decisions.

Additionally, we visualized the regions of interest in the 
tissue slide images according to the Nottingham grade 
using a heat map generated using the ACMIL model. 
The heatmap was generated based on the attention score 
assigned to each patch by the model and served as an 
important tool to visually confirm the histological char-
acteristics. These visualizations showed that the AI model 
was in good agreement with the actual pathological find-
ings, suggesting that it could be used more effectively by 
expert pathologists during the diagnostic process.

Furthermore, biological downstream analysis using 
RNA-seq data revealed that pathways related to cell divi-
sion, chromosome segregation, and mitosis as biological 
processes that were particularly prominent in Notting-
ham grade 3. These pathways reflect the aggressive and 
rapid growth of cancer and include important mecha-
nisms involved in disease progression.

Although this study predicted the Nottingham histo-
logic grade of patients with breast cancer and used it to 
analyze survival, it had several limitations. First, because 
the study was conducted using publicly available data 
from TCGA, the follow-up duration, treatment informa-
tion, and detailed data on tumor subtypes were limited. 
This may limit the depth of the analysis; in particular, the 
lack of inclusion of different tumor subtypes and treat-
ment data may compromise the accuracy of the prognos-
tic assessment. Future studies using larger cohorts with 
longer clinical follow-up periods, including data on dif-
ferent tumor subtypes and treatments, could overcome 
these limitations and clarify the clinical utility of this 
methodology.

Second, there was an imbalance in the data used in 
the analysis, with a relative lack of data from Notting-
ham histologic grade 1 compared to grades 2 and 3. This 
imbalance may have led to a lack of mortality informa-
tion, particularly in survival analyses, thus affecting the 
reliability of the results. To resolve this data imbalance, 
it is necessary to obtain additional data corresponding to 
grade 1, which will play an important role in improving 
the reliability of the analysis.

Third, misclassification between certain Nottingham 
grades, particularly between grades 1 and 2, was observed 
in both the internal and external validation cohorts, as 
illustrated in the confusion matrices (Fig.  4A, B). This 
may be attributable to inherent histological ambiguities 
and overlapping morphological features between adja-
cent grades. Such limitations reflect challenges even 
in routine pathological assessments, where borderline 

cases often exist. Furthermore, as shown in Table 5, the 
external validation cohort demonstrated notably lower 
agreement between the model and pathologist for grade 
2 (Cohen’s kappa = 0.25 ± 0.09), compared to grades 1 
and 3. This suggests the model’s relatively weaker dis-
criminative capacity for intermediate-grade tumors in an 
independent dataset. To improve classification robust-
ness, future studies could explore model fusion tech-
niques or integrate confidence estimation frameworks 
that assess the certainty of predictions. Such approaches 
could enable the model to flag borderline cases with low 
confidence, allowing for more cautious interpretation or 
further pathological review, especially in cases where his-
tological ambiguity is high.

Fourth, this study partially utilized methodologies 
and models developed by existing researchers. This may 
make the performance of the models dependent on exist-
ing technical limitations and limit the development of 
original approaches or new models. Further studies using 
original model development and innovative methodolo-
gies could improve the accuracy and clinical applicability 
of breast cancer histologic grade prediction.

Fifth, Although the univariate survival analysis based 
on pathologist-assigned Nottingham grades demon-
strated a clear stratification of overall survival, it did 
not reach statistical significance under the conventional 
threshold (p < 0.05), as shown in Fig. 5A. This limitation 
may reflect the intrinsic variability in patient progno-
sis that cannot be fully captured by histologic grading 
alone. To further assess the prognostic value of model-
derived grading, we performed a multivariate Cox pro-
portional hazards regression analysis incorporating key 
clinical covariates, including tumor size, ER/HER2/PR 
status, and age. In this multivariate context, neither the 
pathologist-assigned nor the model-predicted Notting-
ham grades retained statistical significance, indicating 
that their prognostic contribution may be attenuated 
by the influence of other clinicopathologic factors. This 
outcome may also be attributed to the overall cohort 
composition, limited availability of detailed clinical data, 
relatively low mortality rates in breast cancer popula-
tions, and the underrepresentation of grade 1 cases, all 
of which could reduce the statistical power of survival 
analyses and hinder robust stratification. Nonetheless, 
compared to pathologist-assigned grading, the model-
predicted grades demonstrated a relatively higher hazard 
ratio and more consistent stratification patterns across 
both univariate and multivariate analyses, particularly 
for higher-grade tumors. This suggests that the model 
may capture subtle histological features with prognostic 
relevance that are not easily discernible through visual 
inspection alone.
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Conclusions
This study demonstrated the successful development 
of an AI model that can accurately predict Nottingham 
tissue grade from H&E-stained slides of breast cancer 
patients. The model effectively addresses a complex diag-
nostic task that traditionally requires expert-level knowl-
edge and experience, enabling faster and more consistent 
assessments. By providing a standardized and automated 
diagnostic capability, it has the potential to significantly 
reduce inter-observer variability that is common in path-
ological assessments. Furthermore, prognostic and bio-
logical follow-up analyses validated the clinical utility of 
the model, highlighting the significance of our findings in 
the broader context of cancer research.

The model can predict tissue grade with high accuracy, 
which could be an important tool to support patholo-
gists and improve the precision of diagnostic and treat-
ment strategies. If integrated into clinical workflows, this 
AI model could contribute to improved patient outcomes 
by facilitating faster and more accurate diagnoses. The 
model also has the potential to be applied to other types 
of cancer and pathologic assessments, providing oppor-
tunities to further advance the automation and objectiv-
ity of pathology analysis. Ultimately, the integration of 
this AI model into the clinical environment could play 
an important role in enhancing personalized treatment 
approaches and optimizing cancer patient care.
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