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Abstract
Background  Early prediction of treatment response to neoadjuvant therapy (NAT) in breast cancer patients can 
facilitate timely adjustment of treatment regimens. We aimed to develop and validate a MRI-based enhanced self-
attention network (MESN) for predicting pathological complete response (pCR) based on longitudinal images at the 
early stage of NAT.

Methods  Two imaging datasets were utilized: a subset from the ACRIN 6698 trial (dataset A, n = 227) and a 
prospective collection from a Chinese hospital (dataset B, n = 245). These datasets were divided into three cohorts: 
an ACRIN 6698 training cohort (n = 153) from dataset A, an ACRIN 6698 test cohort (n = 74) from dataset A, and an 
external test cohort (n = 245) from dataset B. The proposed MESN allowed for the integration of multiple timepoint 
features and extraction of dynamic information from longitudinal MR images before and after early-NAT. We also 
constructed the Pre model based on pre-NAT MRI features. Clinicopathological characteristics were added to these 
image-based models to create integrated models (MESN-C and Pre-C), and their performance was evaluated and 
compared.

Results  The MESN-C yielded area under the receiver operating characteristic curve (AUC) values of 0.944 (95% CI: 
0.906 − 0.973), 0.903 (95%CI: 0.815 − 0.965), and 0.861 (95%CI: 0.811 − 0.906) in the ACRIN 6698 training, ACRIN 6698 
test and external test cohorts, respectively, which were significantly higher than those of the clinical model (AUC: 
0.720 [95%CI: 0.587 − 0.842], 0.738 [95%CI: 0.669 − 0.796] for the two test cohorts, respectively; p < 0.05) and Pre-C 
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Introduction
Neoadjuvant therapy (NAT) has become a standard-
of-care for patients with high-risk and locally advanced 
breast cancer [1], allowing downstaging the tumor and 
rapidly assessing drug susceptibility using longitudi-
nal imaging. Achieving pathologic complete response 
(pCR) is associated with improved survival outcomes 
[2, 3]. Early prediction of pCR is crucial, as it can guide 
clinical decisions and optimize therapeutic strategies 
for individual patients.

Radiological evaluations such as the Response Eval-
uation Criteria in Solid Tumors (RECIST) 1.1 crite-
ria serve as non-invasive tools for evaluating tumor 
response [4]. Yet, the accuracy of these evaluations 
is frequently compromised by factors such as non-
centric shrinkage pattern, inflammatory effects, and 
limitations in imaging resolution. Recent advance-
ments have highlighted the potential of quantitative 
radiological imaging analysis, particularly multipara-
metric MRI, in predicting biological characteristics, 
gene expression profiles, treatment responses, and 
prognostic outcomes [5–8]. Radiomics-based quan-
titative analysis of pre-NAT MRI has shown potential 
for predicting pCR in breast cancer with satisfactory 
accuracy [5–7]. However, these studies have predomi-
nantly focused on single timepoint images, potentially 
missing vital information from longitudinal imaging 
that captures the tumor’s dynamic changes over time. 
Several multicenter studies have enhanced the pCR 
predictive performance by incorporating multiple 
timepoint images, including mid-NAT [9] or post-
NAT longitudinal analysis [10]. However, mid-NAT or 
post-NAT analyses imply longer NAT durations, which 
could prolong the use of ineffective drugs, exacerbate 
adverse effects and miss surgical opportunities for 
patients. Early-NAT accurate prediction can maximize 
patient benefits. The Breast Multiparametric MRI for 
prediction of neoadjuvant chemotherapy Response 
(BMMR2) challenge [11], based on ACRIN 6698 trial 

data, indicated the feasibility of using the early-NAT 
timepoint for pCR prediction. However, the models in 
the BMMR2 challenge did not fully exploit multipara-
metric MRI and longitudinal imaging adaptation net-
work structures, leading to suboptimal performance. 
Furthermore, validation in heterogeneous cohorts is 
essential to comprehensively understand the clinical 
utility, key features, and network connections of longi-
tudinal MRI in predicting pCR.

Multilayer Perceptron (MLP), as a classical neu-
ral network, has demonstrated superior performance 
in radiomics and deep learning studies [9, 10]. Naive 
MLP architectures can not capture interdependencies 
among temporal features. The self-attention mecha-
nism directly captures the internal correlation within 
time-series data, dynamically adjusts attention weights 
for input features, and enhances feature representation 
capability through temporal context modeling [12]. 
Therefore, an enhanced self-attention module (ESM) 
was combined with the MLP for improving the perfor-
mance of the longitudinal imaging model.

In this study, we aim to develop an early multipara-
metric MRI neural network model that integrates MLP 
and ESM, serving as a potential imaging tool for early 
determination of pCR in breast cancer. Additionally, 
since the early timepoint have not yet been clinically 
routinely evaluated, our local institution prospectively 
collected early MRI data to externally validate the 
model.

Materials and methods
Patient cohorts
The overall design of this study is shown in Fig.  1. 
Two datasets were used in this study: a subset from 
the American College of Radiology Imaging Network 
(ACRIN) 6698 trial primary analysis cohort [13] (data-
set A) and a prospective collection cohort at a Chi-
nese hospital from September 2020 to September 2022 
(dataset B). As shown in Fig. 2, the dataset A included 

(AUC: 0.697 [95%CI: 0.554 − 0.819], 0.726 [95%CI: 0.666 − 0.797] for the two test cohorts, respectively; p < 0.05). High 
AUCs of the MESN-C maintained in the ACRIN 6698 standard (AUC = 0.853 [95%CI: 0.676 − 1.000]) and experimental 
(AUC = 0.905 [95%CI: 0.817 − 0.993]) subcohorts, and the interracial and external subcohort (AUC = 0.861 [95%CI: 
0.811 − 0.906]). Moreover, the MESN-C increased the positive predictive value from 48.6 to 71.3% compared with Pre-C 
model, and maintained a high negative predictive value (80.4–86.7%).

Conclusion  The MESN-C using longitudinal multiparametric MRI after a short-term therapy achieved favorable 
performance for predicting pCR, which could facilitate timely adjustment of treatment regimens, increasing the rates 
of pCR and avoiding toxic effects.

Trial registration  Trial registration at ​h​t​t​p​s​:​/​/​w​w​w​.​c​h​i​c​t​r​.​o​r​g​.​c​n​/​​​​​. Registration number: ChiCTR2000038578, registered 
September 24, 2020.

Keywords  Breast cancer, Multiparametric MRI, Neoadjuvant therapy, Pathological complete response, Longitudinal 
radiomics, Deep learning
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227 participants from the ACRIN 6698 primary anal-
ysis cohort with evaluable MRI at both pre-NAT and 
early-NAT. We set the test cohort to be consistent with 
that of the BMMR2 challenge [11] for a fair compari-
son, so the dataset A were split into a training cohort 
(153 of 227) and a test cohort (74 of 227). The initial 
Chinese cohort included 295 participants, with inclu-
sion criteria as follows: (1) women 18 years of age or 
older with invasive breast cancers who were planning 
to undergo NAT; (2) available molecular typing infor-
mation and received standard clinical treatment; (3) 
acceptable MRI at both pre-NAT and early-NAT. Fol-
lowing the application of exclusion criteria, 245 par-
ticipants were available for analysis. Consequently, 
the three cohorts included (1) the ACRIN 6698 train-
ing cohort (n = 153); (2) the ACRIN 6698 test cohort 
(n = 74); (3) the external test cohort (n = 245). In the 
dataset A, the early-NAT timepoint was set to 3 weeks 

after initial treatment [13]. The early-NAT timepoint 
in the dataset B was set to the first three weeks, which 
is the first cycle of NAT, in order to correspond to the 
dataset A (Supplementary Fig. S1).

NAT regimen and histopathology analysis
The ACRIN 6698 and the external test cohort under-
went ultrasound-guided biopsy within 2 weeks prior 
to NAT to determine receptor status. The status of 
estrogen receptor (ER), progestone receptor (PR), 
HER2, and Ki-67 index were determined by immu-
nohistochemistry (IHC) (Supplementary Material-
I). The molecular subtypes were classified into three 
subtypes: HR+/HER2-, HER2+, HR-/HER2-, and the 
NAT regimen was determined according to molecu-
lar subtypes. The ACRIN 6698 trial had a designed 
medication dosing interval and the participants were 
divided into a standard subcohort or an experimental 

Fig. 1  The overall design of the study. (a) Prediction of pCR after early-NAT in breast cancer can facilitate timely adjustment of therapy decision. (b) 
Participants in the ACRIN 6698 trial with useable MRI at both pre-NAT and early-NAT, were used to develop and internally test image-based models. An 
external test was conducted using a prospective cohort from a Chinese hospital. Clinicopathological characteristics were incorporated into the models 
for early pCR prediction. (c) The predictive model used a neural network-based quantitative analysis incorporating an enhanced self-attention module 
to capture dynamic information from longitudinal MRI before and after early-NAT. (d) The model’s performance was evaluated using feature importance 
ranking and ablation experiments, including single time-point images, incomplete sequences, and the removal of the enhanced self-attention module. 
ROC and DCA curves were compared for these experiments
Abbreviations: pCR = pathological complete response; NAT = neoadjuvant therapy; ROC = receiver operating characteristic; DCA = decision curve analysis
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subcohort. The standard regimen was 12 cycles of 
weekly paclitaxel for 12 weeks, followed by four cycles 
of anthracycline-cyclophosphamide before the surgi-
cal procedure. The experimental regimen added one of 
nine experimental agents in 12 cycles of weekly pacli-
taxel [13]. In the external test cohort, the participants 
underwent standard six or eight cycles of NAT (3 
weeks for each cycle). The NAT regimens were either 
anthracycline based, taxane based or anthracycline 
and taxane based according to the National Compre-
hensive Cancer Network (NCCN) guideline [14]. For 
HER2-positive tumors, the ACRIN 6698 trial received 
trastuzumab for the first 12 weeks, while in the exter-
nal test cohort, anti-HER2 targeted trastuzumab (H) 
or trastuzumab + pertuzumab (HP) were added to the 
chemotherapy drugs throughout the entire cycle.

The status of pCR for each target tumor was deter-
mined by surgical-pathological results within 1 month 
after NAT. pCR was defined as the absence of residual 
invasive tumor in both the breast and axillary lymph 
nodes, while residual ductal carcinoma in situ was 
allowed (ypT0/Tis ypN0) [13, 15].

Image acquisition and tumor segmentation
The peak phase of DCE-MRI (hereinafter referred to 
as T1) and DWI (hereinafter referred to as DW) of 
the ACRIN 6698 and external cohorts were used for 
image analysis. Acquisition parameters are shown in 

Supplementary Material-II and Table S1. The target 
tumor of each patient was visible in both pre-NAT and 
early-NAT MRI. Tumor volume masks on T1 images 
were created by threshold-based, seed point driven, 
semi-automatic segmentation using ITK-SNAP (www.
itksnap.org) [16]. Due to the lower resolution of DW 
compared to T1, radiologists manually draw tumor 
borders on each slice of DW (b = 800  s/mm2). Tumor 
borders of DW referenced to the apparent diffusion 
coefficient (ADC) map to ensure clear demarcation 
between diffusion-restricted and normal areas, then 
they shared the ROI. To better assess tumor hetero-
geneity, the ROIs of T1, DW, and ADC encompassed 
the entire tumor including necrotic, hemorrhagic 
areas and surrounding spiculation [17–19]. Two radi-
ologists with at least five years’ experience in breast 
imaging independently segmented tumor with T1, DW 
and ADC. If multicentric lesions located in different 
quadrants, the largest one was selected as the object. 
If multifocal lesions located in the same quadrant, all 
lesions were included in the ROI mask.

Imaging feature extraction and selection
Before imaging features extraction, the original MRI 
and mask images were processed by the B-spline 
interpolation method to normalize the spatial resolu-
tion to 1 × 1 × 1 mm3 [4]. The PyRadiomics package 
(v3.1.0) [20] was utilized to extract imaging features, 

Fig. 2  Patient enrollment flowchart
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including intensity-based histogram, shape, and vari-
ous gray level metrics from pre-NAT and early-NAT 
MRI (Supplementary Material-III). Recent studies 
[7, 21] reported that combining the intratumoral and 
peritumoral information could enhance model perfor-
mance. Thus, a 5  mm distance [7, 22] of peritumoral 
area was expanded using the morphological dilation 
operation (a function from the Scipy package v1.8.0) 
for the extraction of peritumoral features. A total 
of 1409 features were extracted per ROI, resulting in 
16,908 features per patient from the intratumoral and 
peritumoral areas of the pre-NAT and early-NAT T1, 
DW and ADC, respectively.

The imaging features extracted from the pre-NAT and 
early-NAT MRI were defined as the pre-features and 
early-features, respectively. We calculated the delta-fea-
tures which were the differences between the pre-fea-
tures and the early-features of corresponding sequence.

	 Delta − features = (early − features) − (pre − features)� (1)

Following feature extraction, repeatability analysis 
was performed on a subset of 30 samples randomly 
chosen from the external test cohort using intraclass 
correlation coefficient (ICC). Features with an ICC 
value > 0.80 [23] were considered to have satisfactory 
reproducibility and were retained for further analysis. 
Also, spearman correlation analysis eliminated highly 
correlated feature with correlation coefficients > 0.80. 
The remaining features were normalized using Z-score 
normalization.

Development of MRl-based enhanced self-attention 
network (MESN)
An MRI-based enhanced self-attention network 
(MESN) was developed to predict pCR using multipa-
rameter MRI at the early stage of NAT. The flowchart 
of the construction of the MESN was shown in Fig. 3. 
For each patient, the pre-features (i.e., PreT 1 , PreDW

, and PreADC ), the early-features (i.e., EarlyT 1
, EarlyDW , EarlyADC ), and the delta-features (i.e., 
DeltaT 1 , DeltaDW , DeltaADC ) were fed into the 
MESN, and the output of the MESN was the pCR pre-
diction probability (denoted as the signature of image-
based model).

The main components in the MESN were the nine 
multi-layer perceptions (MLP1.T1, MLP1.DW, MLP1.
ADC, MLP2.T1, MLP2.DW, MLP2.ADC, MLP3.T1, 
MLP3.DW, and MLP3.ADC) and a proposed ESM. 
The MLPs were implemented to simulate the nonlin-
ear relationship between the input features and out-
put probability. For the ESM, the positional encoding 
module was used to encode the positional information 
of the Preall , Earlyall , and Deltaall  features, and the 
multi-head self-attention module [12] from the self-
attention-cv package (v 1.2.3) [24] was utilized to learn 
the temporal relationship among the Preall , Earlyall

, and Deltaall  features. Additionally, two loss func-
tions were used in the ESM, one was the cross-entropy 
loss which was utilized to train the model to discrimi-
nate pCR samples from non-pCR samples, the other 
was the proposed feature independence loss which 
was utilized to regularize the Preall , Earlyall  and 
Deltaall  features to be discriminated for the model 

Fig. 3  The MRI-based enhanced self-attention network model for pCR prediction
Abbreviations: pCR = pathological complete response; NAT = neoadjuvant therapy; MLP = multi-layer perceptions; T1 = T1-weighted dynamic contrast-
enhanced MRI; DW = diffusion weighted imaging; ADC = apparent diffusion coefficient; ATP = All Time Points
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optimization. The details of the MESN can be seen in 
Supplementary Material-IV.

Ablation analysis for MESN
To explore whether different components in the pro-
posed MESN were required to accurately predict pCR, 
we conducted a set of ablation experiments by modi-
fying the input image information and network struc-
ture (Supplementary Material-V and Table S2). First, 
we only retained the multiparametric MRI features 
at a single timepoint (pre-features or early-features) 
or delta-features as inputs to evaluate the model per-
formance (denoted as Pre, Early and Delta). Then, we 
separately input individual T1, T1 + DWI, or T1 + ADC 
sequence into MESN to evaluate the performance 
with different MRI sequences (denoted as MESN [T1], 
MESN [T1 + DW] and MESN [T1 + ADC]). Finally, we 
removed ESM to evaluate the pCR prediction perfor-
mance (denoted as NoESM).

Integration with clinicopathological characteristics
Univariable analysis was performed to identify clini-
copathological characteristics associated with pCR. 
Multivariable logistic regression analysis was con-
ducted to construct a clinical model. Then, we further 
developed integration models with the signature of 
image-based models and clinicopathological charac-
teristics (Supplementary Material-VI and Table S3-S4), 
denoted as MESN-C, Pre-C, Early-C, Delta-C, MESN-
C (T1), MESN-C (T1 + DW), MESN-C (T1 + ADC), 
and NoESM-C.

Clinical benefit analysis
At pre-NAT, only the Pre and Pre-C model were avail-
able. MESN-C was available after early-NAT. To clarify 
the clinical benefit of MESN-C, we compared the ben-
efit proportion between the optimal pre-NAT models 
and the MESN-C. For patients predicted by the mod-
els as pCR or non-pCR, we used the actual pathologi-
cal results as the gold standard to assess how many 
patients could benefit from MESN-C.

Statistical analysis
Clinicopathological characteristics and pre-NAT MRI 
findings were compared using Mann–Whitney U test 
and chi-square (or Fisher’s exact) test. In the two test 
cohorts, the model performance was assessed using the 
area under the receiver operating characteristic (ROC) 
curve, accuracy, sensitivity, specificity, positive predic-
tive value (PPV), and negative predictive value (NPV). 
The delong test was used to compare the differences 
between the ROC curves [25]. The net reclassification 
index (NRI) and integrated discrimination improve-
ment (IDI) were used to evaluate improvements in the 

predictive models. The accuracy, sensitivity, specific-
ity, PPV and NPV were calculated at a threshold of 
0.50. The model’s clinical utility was determined using 
decision curve analysis (DCA). All statistical analyses 
were performed using Python 3.8.18. A p-value < 0.05 
indicated statistical significance.

Results
Baseline characteristics
A total of 472 patients with 944 MRI examinations 
were finally analyzed in this study. After NAT, 48/153 
(31.4%) in the ACRIN 6698 training cohort, 23/74 
(31.1%) in the ACRIN 6698 test cohort and 79/245 
(32.2%) in the external test cohort achieved pCR, 
which showed no significant difference between 
them (Table  1, p = 0.965 and 0.856). The external test 
cohort had a higher proportion of grade III tumors 
(p < 0.001) and HER2-positive subtypes (p = 0.002) 
compared with the ACRIN 6698 training cohort. The 
patient characteristics between pCR and non-pCR are 
summarized in Supplementary Table S5. pCR tended 
to present grade III tumor and high Ki-67 only in the 
external test cohort (p < 0.01). HR, HER2, molecu-
lar subtype showed significant associations with pCR 
in both of the ACRIN 6698 and external test cohorts. 
The ACRIN 6698 data revealed that HR and HER2 
were key clinicopathological characteristics for pCR 
prediction to build the clinical model, which obtained 
the AUC of 0.713 (95% confidence interval [CI]: 
0.604 − 0.744) in the ACRIN 6698 training, 0.720 (95% 
CI: 0.587 − 0.842) in the ACRIN 6698 test and 0.738 
(95% CI: 0.669 − 0.796) in the external test cohort 
(Table 2).

Imaging feature selection
We removed the features with poor repeatability and 
high correlation from the extracted features, result-
ing in 198 pre-features of T1, 203 pre-features of DW, 
207 pre-features of ADC; 204 early-features of T1, 
200 early-features of DW, 216 early-features of ADC; 
321 delta-features of T1, 322 delta-features of DW, 
334 delta-features of ADC. All the above features 
were used as inputs for MESN construction. The per-
mutation analysis was used to evaluate the feature 
importance (Fig.  4a and Supplementary Fig. S2), with 
selected top three features illustrated in Fig. 4b-g. The 
top 30 important features mainly came from early 
timepoint (23/30), T1 sequence (19/30), and peritu-
moral region (17/30).

Performance of the MESN and MESN-C
The proposed MESN model obtained a high accuracy 
with an AUC of 0.923 (95%CI: 0.874 − 0.963) in the 
ACRIN 6698 training cohort. Furthermore, the MESN 
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achieved consistently a high accuracy with AUC val-
ues of 0.860 (95%CI: 0.757 − 0.939) in the ACRIN 
6698 test cohort and 0.804 (95%CI: 0.752 − 0.864) in 
the external test cohort (Table  2). After incorporat-
ing clinicopathological characteristics, the MESN-C 

performed remarkably well with AUC of 0.903 (95%CI: 
0.815 − 0.965) and 0.861 (95%CI: 0.811 − 0.906) in the 
two test cohorts, respectively.

In the subgroup analysis, MESN-C maintained high 
predictive performance in the subgroups of different T 

Table 1  Comparison of clinicopathologic characteristics among the ACRIN 6698 training, ACRIN 6698 test and the external test 
cohorts
Characteristics ACRIN 6698 Training (n = 153) ACRIN 6698 Test (n = 74) External Test (n = 245) p* p#
Age (years) 48 ± 15 48 ± 14 51 ± 15 0.912 0.062
Tumor size (cm) 3.40 ± 1.90 3.85 ± 2.70 3.70 ± 2.40 0.018 0.298
Race 0.807 NA
  White 109 (71.2) 53 (71.6) 0
  Black 16 (10.5) 9 (12.2) 0
  Asian 11 (7.2) 3 (4.0) 245 (100)
  Other 17 (11.1) 9 (12.2) 0
TNM stage NA NA
  II A 0 0 30 (12.2)
  II B 0 0 95 (38.8)
  III A 0 0 50 (20.4)
  III B 0 0 29 (11.8)
  III C 0 0 41 (16.8)
  Not available 153 (100) 74 (100) 0
Nuclear grades 0.648 < 0.001
  1 3 (2.0) 2 (2.7) 1 (0.4)
  2 45 (29.4) 17 (23.0) 156 (63.7)
  3 104 (68.0) 55 (74.3) 88 (35.9)
Missing 1 (0.6) 0 0
Enhancement type 0.101 0.053
  Mass 141 (92.2) 63 (85.1) 213 (86.9)
  Non-mass 12 (7.8) 11 (14.9) 32 (13.1)
Multi-focality or multi-centricity 0.494 0.269
  Yes 88 (57.5) 39 (52.7) 127 (51.8)
  No 65 (42.5) 35 (47.3) 118 (48.2)
HR 0.448 0.306
  Positive 87 (56.9) 46 (62.2) 152 (62.0)
  Negative 66 (43.1) 28 (37.8) 93 (38.0)
HER2 0.769 0.002
  Positive 40 (26.1) 18 (24.3) 102 (41.6)
  Negative 113 (73.9) 56 (75.7) 143 (58.4)
Ki-67 NA NA
  ≤ 20% 0 0 50 (20.4)
  > 20% 0 0 195 (79.6)
  Not available 153 (100) 74 (100) 0
Molecular subtypes 0.300 0.003
  Luminal HER2- 62 (40.5) 33 (44.6) 95 (38.8)
  Luminal HER2+ 25 (16.3) 13 (17.6) 57 (23.3)
  HER2 enriched 15 (9.8) 5 (6.7) 45 (18.4)
  TNBC 51 (33.4) 23 (31.1) 48 (19.5)
Treatment response 0.965 0.856
  pCR 48 (31.4) 23 (31.1) 79 (32.2)
  non-pCR 105 (68.6) 51 (68.9) 166 (67.8)
Note. Age and tumor size are shown as median ± IQR, and the others are shown as proportions (percentages). p* values represent the comparison of clinicopathologic 
variables between the ACRIN 6698 training and test cohort; p# values represent the comparison of clinicopathologic variables between the ACRIN 6698 training and 
external test cohort. Bold text with p values indicate statistical significance. NA = not applicable; ER = estrogen receptor; PR = progesterone receptor; HER2 = human 
epidermal growth factor receptor-2; TNBC = triple-negative breast cancer
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stages, nuclear grades, HR, HER2 status and molecular 
subtypes (Supplementary Table S6). Notably, MESN-C 
was not affected by NAT regimens, as demonstrated 
by the performance of the ACRIN 6698 standard 
(AUC = 0.853, 95%CI: 0.676 − 1.000), experimental 
(AUC = 0.905, 95%CI: 0.817 − 0.993), and the external 
subcohorts (AUC = 0.861, 95%CI: 0.811 − 0.906).

We also evaluated the clinical utility of MESN-C in 
pCR prediction (Supplementary Fig. S3), which indi-
cated that the MESN-C was clinically useful when 
intervention was decided in the threshold range of 
0–85% in the ACRIN 6698 and external test cohorts.

Ablations of MESN and model comparisons
The MESN model, integrating multiparametric fea-
tures from longitudinal MR images, showed a supe-
rior performance in predicting pCR compared with 
the conventional clinical model and single timepoint 
models (Tables  2 and 3, Supplementary Table S7 and 
Fig. 5).

Compared with the clinical model, the predic-
tive performance of MESN-C was the highest in 
the ACRIN 6698 test cohort (delong/NRI/IDI 
p = 0.007/0.027/<0.001) and the external test cohort 
(delong/NRI/IDI p < 0.001, Table 3).

To illustrate the advantages of using full timepoint in 
the prediction of pCR, MESN was compared with the 
Pre, Early and Delta models. Unsurprisingly, MESN 

achieved a better performance than Pre / Early / Delta 
models (AUC = 0.626 [95%CI: 0.475 − 0.754] / 0.725 
[95%CI: 0.604 − 0.850] / 0.640 [95%CI: 0.489 − 0.779] 
in the ACRIN 6698 test, respectively; AUC = 0.607 
[95%CI: 0.542 − 0.685] / 0.693 [95%CI: 0.632 − 0.764] / 
0.682 [95%CI: 0.603 − 0.752] in the external test cohort, 
respectively). The MESN-C also achieved a better pre-
dictive performance than Pre-C / Early-C / Delta-C 
models (AUC = 0.697 [95%CI: 0.554 − 0.819] / 0.796 
[95%CI: 0.681 − 0.890] / 0.680 [95%CI: 0.527 − 0.810] 
in the ACRIN 6698 test,, respectively; AUC = 0.726 
[95%CI: 0.666 − 0.797] / 0.822 [95%CI: 0.768 − 0.875] 
/ 0.750 [95%CI: 0.675 − 0.812] in the external test 
cohort,, respectively) (Tables  2 and 3, Supplementary 
Table S7 and Fig.  5). The DCA of MESN and MESN-
C maintained the highest net benefit within a wider 
range of risk threshold (Supplementary Fig. S3).

To investigate the necessity of using full sequences 
in the prediction of pCR, MESN was compared with 
MESN(T1), MESN(T1 + DW) and MESN(T1 + ADC) 
models. There was a significant improvement 
in prediction performance of MESN (Table  3). 
MESN(T1 + ADC) or MESN-C(T1 + ADC) has the 
closest AUC and DCA to MESN or MESN-C, respec-
tively (Supplementary Table S7, Fig. 5 and Supplemen-
tary Fig. S3), indicating T1 and ADC sequences are 
relatively important. Feature importance analysis also 

Table 2  The model performance for pCR prediction in the ACRIN 6698 training, internal ACRIN 6698 test and external test cohort with 
full sequences under different early-treatment timepoints
Models AUC (95% CI) ACC (%) SEN (%) SPE (%) PPV (%) NPV (%)
ACRIN 6698 Training
  Clinical 0.713 (0.604, 0.744) 61.4 83.3 51.4 44.0 87.1
  Pre 0.873 (0.811, 0.925) 79.7 77.1 81.0 64.9 88.5
  Pre-C 0.896 (0.841, 0.943) 80.4 81.2 80.0 65.0 90.3
  MESN 0.923 (0.874, 0.963) 86.3 77.1 90.5 78.7 89.6
  MESN-C 0.944 (0.906, 0.973) 83.7 83.3 83.8 70.2 91.7
ACRIN 6698 Test
  Clinical 0.720 (0.587, 0.842) 62.2 78.3 54.9 43.9 84.8
  Pre 0.626 (0.475, 0.754) 64.9 34.8 78.4 42.1 72.7
  Pre-C 0.697 (0.554, 0.819) 75.7 65.2 80.4 60.0 83.7
  MESN 0.860 (0.757, 0.939) 82.4 56.5 94.1 81.2 82.8
  MESN-C 0.903 (0.815, 0.965) 86.5 73.9 92.2 81.0 88.7
External Test
  Clinical 0.738 (0.669, 0.796) 61.2 84.8 50.0 44.7 87.4
  Pre 0.607 (0.542, 0.685) 60.0 45.6 66.9 39.6 72.1
  Pre-C 0.726 (0.666, 0.797) 66.5 65.8 66.9 48.6 80.4
  MESN 0.804 (0.752, 0.864) 77.6 46.8 92.2 74.0 78.5
  MESN-C 0.861 (0.811, 0.906) 81.6 72.2 86.1 71.3 86.7
Note. Numbers in parentheses are 95% confidence intervals; Clinical: model based on clinicopathological characteristics; Pre: model based on pre-features; Pre-C: 
model built using the signature of Pre and clinicopathological characteristics; MESN: MRI-based enhanced self-attention network; MESN-C: model built using the 
signature of MESN and clinicopathological characteristics

pCR = pathological complete response; AUC = receiver operating characteristic curve; ACC = accuracy; SEN = sensitivity; SPE = specificity; PPV = positive predictive 
value; NPV = negative predictive value
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Fig. 4 (See legend on next page.)
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indicated that the top 30 features all came from T1 or 
ADC (Fig. 4a).

To estimate the importance of capturing the dynamic 
information from longitudinal MR images, we com-
pared MESN with NoESM. MESN performed better 
(AUC = 0.860 [95%CI: 0.757 − 0.939] vs. 0.671 [95%CI: 
0.511 − 0.800] in the ACRIN 6698 test; AUC = 0.804 
[95%CI: 0.752 − 0.864] vs. 0.754 [95%CI: 0.698 − 0.823] 
in the external test cohort) (Supplementary Table S7, 
Fig.  5) and showed higher clinical net benefits than 
NoESM (Supplementary Fig. S3). After integrating 
clinicopathological characteristics, the superiority of 
MESN-C remained significant (Table 3and Fig. 5).

Additionally, to surpass the BMMR2 challenge, we 
compared our models with the models in the BMMR2 
challenge using the same ACRIN 6698 test settings. 
The AUC of the MESN-C (AUC = 0.903 [95%CI: 
0.815 − 0.965]) model was higher than those of the top 
three teams in the BMMR2 challenge (team A / B / C, 
AUC = 0.840 [95%CI: 0.748 − 0.932] / 0.838 [95%CI: 
0.748 − 0.928] / 0.803 [95%CI: 0.702 − 0.904]) [11]. The 
comparison among the models was shown in Table 4.

Clinical benefit analysis
As illustrated in Fig.  6, for the total 245 patients in 
the external test cohort, Pre-C predicted 107 patients 
as pCR and correctly identified 48.6% (52/107) true-
positive cases. MESN-C increased the PPV to 71.3% 
(57/80). MESN-C also slightly improved the NPV from 
80.4% (111/138) to 86.7% (143/165). These patients 
could benefit from MESN-C to decide whether to con-
tinue with the initial medication or adjust therapy to 
achieve pCR.

Discussion
In this study, longitudinal MR images were used from 
the ACRIN 6698 trial data to construct a neural net-
work model (MESN) for early pCR prediction in breast 
cancer, and this model performed well in both the 
ACRIN 6698 test cohort and the external test cohort. 
After integrating the signature of MESN with the clini-
copathological characteristics, the MESN-C model 
achieved satisfactory performance in AUC, sensitiv-
ity, and specificity, offering clinicians the potential to 
promptly adjust treatment, thereby enhancing pCR 

rates and mitigating the risk of adverse effects from 
unnecessary treatments.

Changes in tumor size, cellularity, and perfusion 
following treatment are indicative of the tumor’s 
response to therapy [26], and these alterations can be 
effectively monitored through longitudinal multipara-
metric MRI [9, 10, 13, 27–29]. Consequently, incorpo-
rating early multiparametric MRI could facilitate the 
prediction of pCR. MESN was developed by integrat-
ing pre-NAT and early-NAT multiparametric MRI, 
capturing the dynamic changes therein. MESN demon-
strated a superior prediction performance compared 
to that of the models with single timepoint data, par-
tial sequence inputs, or those lacking the ESM module. 
Huang et al. [10] have previously assessed treatment 
responses using deep learning based on pre- and 
post-NAT MRI, achieving AUC ranging from 0.837 to 
0.929 across breast cancer subtypes. Li et al. [9] set-
ting the predictive timepoint at mid-NAT, reported 
an AUC exceeding 0.90 with their proposed artificial 
intelligence system. These two models required con-
tinuation until the mid or late stages of NAT before 
becoming operational. This extended observation 
period could potentially prolong the administration of 
ineffective medications and heighten the risk of side 
effects. Early MRI assessments, while not mandatory, 
necessitate prospective data collection, similar to the 
one-cycle data utilized in the external test cohort. The 
ACRIN 6698 trial, a publicly available dataset rich in 
early longitudinal multiparametric MRI, served as 
the foundation for the BMMR2 challenge’s pCR pre-
diction competition [11]. MESN-C outperformed 
the best model in the BMMR2 challenge in the same 
ACRIN 6698 test set, with an AUC of 0.903 (95%CI: 
0.815 − 0.965) compared to that of 0.840 (95%CI: 
0.748 − 0.932), a performance difference that could be 
attributed to the critical inclusion of multiple time-
points, multiparametric MRI inputs, and the integra-
tion of an ESM module. An additional benefit of the 
MESN-C is its lack of reliance on additional kinetic 
mapping calculations, which are often challenging to 
standardize across different settings. Moreover, the 
expanded external testing is deemed a crucial mile-
stone before these models can be clinically integrated 
to inform therapeutic decisions [11]. Our prospective 

(See figure on previous page.)
Fig. 4  (a) The importance ranking of the top 30 features in the MESN. (b-g) The original T1, DW, ADC and corresponding top three radiomics feature maps 
for patients with pCR (b, d, f) and non-pCR (c, e, g) who had the same tumor stage, NAT regimen and the similar age. The differences of raw data were not 
apparent to the naked eye. The MESN model recognized the subtle differences: peritumoral logarithm_ngtdm_Contrast and wavelet-LLL_glszm_Low-
GrayLevelZoneEmphasis on T1 images after early-NAT in pCR patients is lower than in non-pCR patients, whereas logarithm_firstorder_Minimum is 
higher. The color bar on the right refers to the image intensity value of the radiomics feature map, with red representing high values and blue represent-
ing low values
Abbreviations: MESN = MRI-based enhanced self-attention network; pCR = pathological complete response; NAT = neoadjuvant therapy; T1 = T1-weight-
ed dynamic contrast-enhanced MRI; DW = diffusion weighted imaging; ADC = apparent diffusion coefficient; HR = hormone receptor; HER2 = human 
epidermal growth factor receptor-2
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data has proved the significant clinical advantages of 
the MESN-C, highlighting its potential to revolution-
ize patient care.

The MESN-C model, constructed by data from the 
ACRIN 6698 trial, demonstrated satisfactory perfor-
mance in both standard and experimental subcohorts, 
as well as in an interracial Chinese cohort treated with 
NCCN-standard regimens. This indicates that the 
MESN-C captures early drug efficacy information that 
is not confined to specific NAT regimens. The MESN-
C model outperformed the Pre-C model, achieving 
an AUC of 0.861 (95%CI: 0.811 − 0.906) in the inter-
racial Chinese cohort. Compared to the Pre-C model, 
the MESN-C model helps identify more patients who 
will benefit most from NAT at the earliest stages of 
treatment, ensuring that these patients complete the 
full NAT cycles and achieve the best effects, poten-
tially benefiting from breast-conserving surgery and 
omission of axillary node dissection. The MESN-C 
model can also identify patients with poor response 
after early treatment, allowing for timely adjustments 
of treatment protocols or alterations of therapeutic 

targets, thereby avoiding longer exposure to ineffective 
treatments, which could potentially increase the over-
all pCR rate and reduce the risk of recurrence. Also, 
imaging models that involve experimental drugs have 
the potential to function as early biomarkers in clinical 
trials, thereby expediting the validation of new drug 
efficacy in future research.

An interesting finding is that the top contribut-
ing features of MESN were derived from T1 images 
after early treatment. As previously reported, single-
timepoint models using T1 images after early- [28, 
30], mid- [9], and post-NAT [10] generally performed 
better than pre-NAT model and delta-models, or had 
the higher weights in longitudinal integrated models. 
In sequence comparisons, Eun et al. [19] reported that 
radiomic models built with T1 sequence outperformed 
those built with T2WI/DWI/ADC sequences. The 
importance of T1-derived features after early-NAT 
stems from their direct origin and the incorporation 
of therapeutic information. These features may poten-
tially reflect a series of treatment-induced changes, 
such as microvascular remodeling [31], oxygen supply 

Table 3  Model comparisons in term of AUC, net reclassification index (NRI) and integrated discrimination improvement (IDI) in the 
internal ACRIN 6698 test cohort and the external test cohort
Model comparisons Delong NRI IDI

p 95%CI p 95%CI p
ACRIN 6698 test
  MESN-C vs. Clinical 0.007 0.329 (0.036–0.622) 0.027 0.298 (0.178–0.418) < 0.001
  MESN vs. Pre 0.001 0.374 (0.083–0.666) 0.012 0.119 (0.038–0.200) 0.004
  MESN-C vs. Pre-C 0.001 0.205 (-0.055–0.465) 0.123 0.255 (0.120–0.390) < 0.001
  MESN vs. MESN (T1) 0.006 0.296 (0.063–0.529) 0.013 0.117 (0.070–0.164) < 0.001
  MESN-C vs. MESN-C (T1) 0.014 0.283 (0.044–0.522) 0.020 0.167 (0.046–0.289) 0.007
  MESN vs. MESN (T1 + DW) 0.004 0.311 (0.080–0.542) 0.008 0.076 (0.029–0.122) 0.002
  MESN-C vs. MESN-C (T1 + DW) 0.017 0.122 (-0.051–0.295) 0.167 0.161 (0.062–0.259) 0.001
  MESN vs. MESN (T1 + ADC) 0.704 0.013 (-0.210–0.238) 0.905 0.052 (0.017–0.088) 0.004
  MESN-C vs. MESN-C (T1 + ADC) 0.253 0.228 (0.014–0.443) 0.037 0.162 (0.077–0.246) < 0.001
  MESN vs. NoESM 0.004 0.387 (0.171–0.603) < 0.001 0.089 (0.033–0.146) 0.002
  MESN-C vs. NoESM-C 0.007 0.280 (0.048–0.513) 0.018 0.238 (0.123–0.346) < 0.001
External test
  MESN-C vs. Clinical < 0.001 0.235 (0.111–0.358) < 0.001 0.224 (0.164–0.284) < 0.001
  MESN vs. Pre < 0.001 0.266 (0.110–0.421) 0.001 0.086 (0.053–0.119) < 0.001
  MESN-C vs. Pre-C < 0.001 0.256 (0.112–0.401) 0.001 0.194 (0.124–0.264) < 0.001
  MESN vs. MESN (T1) 0.003 0.101 (-0.018–0.222) 0.096 0.068 (0.043–0.094) < 0.001
  MESN-C vs. MESN-C (T1) 0.024 0.121 (0.015–0.228) 0.026 0.086 (0.032–0.140) 0.002
  MESN vs. MESN (T1 + DW) 0.007 0.051 (-0.065–0.168) 0.388 0.036 (0.012–0.061) 0.004
  MESN-C vs. MESN-C (T1 + DW) 0.030 0.100 (-0.008–0.209) 0.071 0.057 (0.008–0.106) 0.022
  MESN vs. MESN (T1 + ADC) 0.057 0.004 (-0.101–0.110) 0.939 0.056 (0.040–0.073) < 0.001
  MESN-C vs. MESN-C (T1 + ADC) 0.212 0.017 (-0.054–0.089) 0.633 0.120 (0.084–0.157) < 0.001
  MESN vs. NoESM 0.058 0.140 (0.035–0.245) 0.009 0.025 (0.004–0.046) 0.020
  MESN-C vs. NoESM-C 0.058 0.061 (-0.035–0.156) 0.211 0.112 (0.063–0.161) < 0.001
Note. Significant p-values (p < 0.05) are highlighted in bold. Clinical: model based on clinicopathological characteristics; Pre: model built based on pre-features; Pre-
C: model built using the signature of Pre and clinicopathological characteristics; MESN: MRI-based enhanced self-attention network; MESN-C: model built using the 
signature of MESN and clinicopathological characteristics. NoESM: MESN model without enhanced self-attention module (ESM); NoESM-C: model built using the 
signature of NoESM and clinicopathological characteristics. The parentheses after MESN or MESN-C contain the MRI sequences input into the model

T1 = the peak phase of T1-weighted dynamic contrast enhanced MRI; DW = diffusion weighted imaging; ADC = apparent diffusion coefficient
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Table 4  Comparison of models among team A, B,C in the BMMR2 challenge and ours
Prediction Model Sequence Used Timepoint 

Used
Clinical Feature Was Model 

Tested Using 
Other Data?

Model Performance

Team A Logistic regression SER map and kinetic 
maps from DCE image

Pre-NAT and 
early-NAT

HR and HER2 No ACRIN 6698 test: 0.840 (95%CI: 
0.748–0.932)

Team B XGBoost, Random 
forest, Logistic 
regression

DCE image, SER map, 
PE map, DW image

Pre-NAT, 
early-NAT, 
and mid-NAT

Age, Race, Le-
sion Type, SBR 
Tumor Grade, 
MRI Longest 
Diameter, HR 
and HER2

No ACRIN 6698 test: 0.838 (95%CI: 
0.748–0,928)

Team C Logistic regression DW image early-NAT, MRI Longest 
Diameter, HR 
and HER2

No ACRIN 6698 test: 0.803 (95%CI: 
0.702–0.904)

MESN Neural networks DCE image, DW image, 
and ADC image

Pre-NAT and 
early-NAT

None Yes ACRIN 6698 test: 0.860 (95%CI: 
0.757–0.939)
External test: 0.804 (95%CI: 0.752–0.864)

MESN-C Neural networks, 
Logistic regression

DCE image, DW image, 
and ADC image

Pre-NAT and 
early-NAT

HR and HER2 Yes ACRIN 6698 test: 0.903 (95%CI: 
0.815– 0.965)
External Test: 0.861 (95%CI: 0.811–0.906)

MESN: MRI-based enhanced self-attention network; MESN-C: model built using the signature of MESN and clinicopathological characteristics

DCE = dynamic contrast-enhanced, SER = signal enhancement ratio; DW = diffusion-weighted, HR = hormone receptor, HER2 = human epidermal growth receptor 2

Fig. 5  Performances of MESN and MESN-C for pCR prediction. (a-b) MESN vs. models with single timepoint input; (c-d) MESN-C vs. models with single 
timepoint input; (e-f) MESN vs. models with single or dual sequence input; (g-h) MESN-C vs. models with single or dual sequence input; (i-j) MESN vs. 
model without ESM; (k-l) MESN-C vs. model without ESM
Abbreviations: Pre: model based on pre-features; Pre-C: model built using the signature of Pre and clinicopathological characteristics; Delta: model based 
on delta-features; Delta-C: model built using the signature of Delta and clinicopathological characteristics; Early: model based on early-features; Early-C: 
model built using the signature of Early and clinicopathological characteristics; MESN: MRI-based enhanced self-attention network; MESN-C: model built 
using the signature of MESN and clinicopathological characteristics; The parentheses after MESN or MESN-C contain the MRI sequences input into the 
model (T1 = T1-weighted dynamic contrast-enhanced MRI; DW = diffusion weighted imaging; ADC = apparent diffusion coefficient); NoESM: MESN model 
without enhanced self-attention module (ESM); NoESM-C: model built using the signature of NoESM and clinicopathological characteristics; AUC = area 
under the curve
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[32], and immune infiltration [17, 21]. Histopathologi-
cal analysis has demonstrated that early on-treatment 
immune response is more predictive of treatment out-
come than baseline immune response [26, 33]. The 
pairing and integration of early on-treatment imaging 
and histopathological data are anticipated to elucidate 
these high-contributing features. Additionally, we also 
found that the peritumoral early-features of T1 images 
remained in the top four. The peritumoral area on 
T1 images better predicted pCR than the tumor area 
alone and associated with the immune microenviron-
ment [7, 21, 34]. Here we newly identified a series of 
peritumoral features from early-NAT T1 images that 
also contribute to pCR prediction. The peritumoral 
area after early-NAT is the key region in the tumor 
bed after initial tumor regression. Peritumoral early-
features may potentially capture the microstructure 
change, such as tumor cell activity, stromal fibrosis, 
and immune response [35].

Our study has several limitations. First, the sample 
size of the training cohort is limited. Future researches 
should aim to collect a larger number of samples from 
multiple centers to facilitate more robust analyses, 
such as the development of three-dimensional convo-
lutional networks and the evaluation of various treat-
ment regimens. Second, the external cohort did not 
include the use of experimental drugs and differed 
from the ACRIN 6698 trial in terms of medication fre-
quency. Future assessments of early prediction models 
for specific medications are warranted as these drugs 
become integrated into clinical neoadjuvant settings, 
enabling the evaluation of larger datasets. Finally, the 
biological explanations directly related to MRI pheno-
types have not been studied. Further studies require an 
interdisciplinary approach that combines genomics or 
pathomics to elucidate the biological meaning of phe-
notypes [36, 37].

Fig. 6  Clinical benefit assessment of MESN-C. (a) Recommendation for pCR prediction according to Pre-C and MESN-C; (b) Benefit rate of non-pCR pa-
tients predicted in two models; (c) Benefit rate of pCR patients predicted in two models
Abbreviations: Pre: model based on pre-features; Pre-C: model built using the signature of Pre and clinicopathological characteristics; MESN: MRI-based 
enhanced self-attention network; MESN-C: model built using the signature of MESN and clinicopathological characteristics; pCR = pathological complete 
response; NAT = neoadjuvant therapy
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Conclusions
The proposed MESN-C using longitudinal multipa-
rametric MRI achieved favorable performance for 
predicting pCR after short-term testing therapy. The 
MESN-C had the potential to assist clinicians in the 
early adjustment of therapy, increasing the rates of 
pCR and avoiding toxic effects.

Abbreviations
MESN	� MRI-based enhanced self-attention network
T1	� T1-weighted dynamic contrast-enhanced MRI
DW	� Diffusion weighted imaging
ADC	� Apparent diffusion coefficient
NAT	� Neoadjuvant therapy
pCR	� Pathological complete response
ROC	� Receiver operating characteristic
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