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Abstract 

Background  Streamlining the clinical procedure of human epidermal growth factor receptor 2 (HER2) examina-
tion is challenging. Previous studies neglected the intra-class variability within both HER2-positive and -negative 
groups and lacked multi-cohort validation. To address this deficiency, this study collected data from multiple cohorts 
to develop a robust model for HER2 scoring utilizing only Hematoxylin&Eosin-stained whole slide images (WSIs).

Methods  A total of 578 WSIs were collected from five cohorts, including three public and two private datasets. 
Each WSI underwent adaptive scale cropping. The transfer-learning-based probabilistic aggregation (TL-PA) model 
and multi-instance learning (MIL)-based models were compared, both of which were trained on Cohort A and vali-
dated on Cohorts B–D. The model demonstrating superior performance was further evaluated in the neoadjuvant 
therapy (NAT) cohort. Scoring performance was assessed using the area under the receiver operating characteristic 
curve (AUC). Correlation between the model scores and specific grades (HER2 levels, pathological complete response 
(pCR) status, residual cancer burden (RCB) grades) were evaluated using Spearman rank correlation and Dunn’s test. 
Patch analysis was performed with manually defined features.

Results  For HER2 scoring, the TL-PA significantly outperformed the MIL-based models, achieving robust AUCs in four 
validation cohorts (Cohort A: 0.75, Cohort B: 0.75, Cohort C: 0.77, Cohort D: 0.77). Correlation analysis confirmed 
a moderate association between model scores and manual reader-defined HER2-IHC status (Coefficient(Spearman) = 0.37, 
P(Spearman) = 0.001) as well as RCB grades (Coefficient(Spearman) = 0.45, P(Spearman) = 0.0006). In Cohort NAT, with the non-pCR 
as the positive control, the AUC was 0.77. Patch analysis revealed a core-to-peritumoral probability decrease pattern 
as malignancy spread outward from the lesion’s core.

Conclusion  TL-PA shows robust generalization for HER2 scoring with minimal data; however, it still inadequately 
capture intra-class variability. This indicates that future deep-learning endeavors should incorporate more detailed 
annotations to better align the model’s focus with the reasoning of pathologists.
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Introduction
Human epidermal growth factor receptor 2 (HER2) is 
an important treatment target for breast cancer, which 
is diagnosed by immunohistochemistry (IHC) examina-
tion [1]. An IHC score of 3+ or, an equivocal IHC score 
of 2+ with subsequent amplification by fluorescence 
in  situ hybridization (FISH) is considered to indicate 
HER2-positive [2]. Almost 15–20% of breast cancer cases 
are HER2-positive which could be significantly benefit 
from anti-HER2 targeted therapy [3]. Hence, accurate 
identification of HER2 status is critical for breast cancer 
treatment.

Currently, the gold standard for clinical HER2 detection 
relies on the IHC and FISH [4]. Potential inter-observer 
variability  stemming from pathologists’  experience or 
equipment quality  is a crucial clinical issue, particularly 
within the HER2-low group,  that could significantly 
impact treatment decisions [5, 6]. To address this chal-
lenge, machine learning was introduced to enhance the 
consistency of HER2 identification on IHC-stained whole 
slide images (WSIs) [7, 8]. However, IHC examinations 
remained time-consuming and costly, prompting clini-
cians to seek a more cost-effective method for HER2 test-
ing. In this context, methods based on Hematoxylin and 
Eosin (HE)-stained WSIs are explored.

Based on the hypothesis that molecular differences 
often manifest as morphologic phenotypes at the cell-
level, HER2 indicators mayt be more readily discernible 
in a HE-stained WSIs than in other radiology examina-
tions [9, 10]. In related studies, the selection of the region 
of interest (ROI) and the approach to feature extraction 
had emerged as two primary research focuses in compu-
tational pathology [11–17]. Given the nonspecific label-
ling for HER2 expression by HE-staining, researchers 
attempted to reduce the computational cost associated 
with gigapixel WSIs by exploring methods such as ran-
domization [13], cell density [15], or tumor masking [12] 
for ROI selection. An ROI was generally composed of a 
variable number of patches instead of pixel-level segmen-
tation. Then, patches from the ROI were transferred into 
a feature extractor. According to the approach of extrac-
tor training, models can be divided into a multi-instance 
learning (MIL) as the back-end [11, 13, 14, 16, 17] and a 
sub-classifier aggregation as the front-end [12, 15]. Previ-
ous studies had illustrated that assessing molecular sub-
type could profit from deep learning and some proper 
experience implantation.

Tumor heterogeneity in breast cancer, coupled with 
external factors like variations in slide preparation, 
scanning, and annotation, may affect the generaliz-
ability of computational pathology models [18, 19]. 
Consequently, multi-cohort validation has become 
essential. With advancements in precision medicine, 

HER2-positive breast cancer should receive anti-HER2 
treatment, while HER2-low breast cancer also had spe-
cific drug (Trastuzumab Deruxtecan) [20]. As a result, 
classifying HER2 status into only two categories (posi-
tive and negative) was unable to support individualized 
treatment [3]. Addressing the development of a more 
practical model based on limited resources has become 
a meaningful topic.

In this study, HE-stained WSIs from five cohorts were 
collected. Two frameworks were trained and validated. 
Our work aims to develop a robust model for HER2 
scoring and assess its ability to capture the 5-level 
ordered patterns consistent with pathologist annota-
tions, offering valuable insights for automatic HER2 
scoring.

Materials and methods
Data sources
The HE-stained WSIs of breast cancer cohorts were col-
lected for this study from three public cohorts(cohorts A, 
B, and NAT) and two private cohorts(cohorts C and D). 
A summary of data collection was provided in Fig. 1 and 
Supplementary Table  S1, including scanning magnifica-
tion, scanner type, estrogen receptor (ER) and progester-
one receptor (PR) status, HER2 status, and HER2-IHC/
FISH status. ER/PR positive  was defined as ≥ 1%. All 
specimens were invasive breast carcinoma. IHC were 
performed through paraffin section. HER2 identifica-
tion strictly adhered to the American Society of Clini-
cal Oncology/College of American Pathologists (ASCO/
CAP) clinical practice guidelines.

Cohort A from TCGA-BRCA was employed for model 
training and validation in a ratio 8:2. Cohort B from the 
Yale Pathology electronic database [12], cohorts C from 
Jiangmen Central Hospital, and cohorts D from Jiangmen 
Maternity and Child Health Care Hospital were used for 
external validation. Neoadjuvant therapy (NAT) cohort 
[21], comprising 62 HER2-positive patients treated with 
doxorubicin/cyclophosphamide/taxol together with 
anti-HER2 targeted therapy, was utilized to investigate 
the correlation between model scores and NAT efficacy. 
Pathological complete response (pCR) and residual can-
cer burden (RCB) were employed as efficacy indicators.

The training set contained 140 cases. A total of 438 
cases were assigned to the validation set, including inter-
nal validation (35 cases), external validation (341 cases) 
and NAT cohort (62 cases).

This study was centrally approved by the Ethical Com-
mittee of the Jiangmen Central Hospital (No.[2022] 107) 
and complied with all relevant ethical regulations. All 
patients provided written informed consent for the sam-
ples used for research.
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Model frameworks
Two frameworks were evaluated in this study: sub-clas-
sifier aggregation and multi-instance learning (MIL). In 
Framework 1 (sub-classifier aggregation), a sub-classifier 
was trained to predict the HER2-positive probability for 
each patch. These probabilities were then aggregated into 
a WSI-level HER2 score according to a predefined rule. In 
Framework 2 (MIL), patch features were extracted from 
a pre-trained backbone model. By sharing a WSI-level 
label, these features were then combined into a bag-level 
representation. Subsequently, they were aggregated with 
an attention-based or graph-based learning approach to 
predict HER2 status at the WSI level. (Fig. 2).

Sub‑classifier aggregation
Transfer learning  In Framework 1, the performance 
of WSI-level prediction largely depended on the patch 
classifier. To avoid over-fitting occurred within super-
vised training, transfer learning was introduced [22, 23]. 
The Swin-T (Swin-transformer-Tiny) was adopted as the 

carrier of transfer learning for its remarkable generaliz-
ability [24, 25]. The training patches were cropped to two 
sizes ( 1024 × 1024 , 2048× 2048 ) for data augmentation. 
Then, these patches were subjected to stain normalization 
by Vahadane [26]. The patches in the background were 
excluded by a variance less than 500. The patches in the 
tumor mask inherited their original WSI label (HER2±), 
while the others were labeled Non-tumor. Table 1 showed 
the numbers of patches included in this transfer learning 
process.

The Swin-T model was trained using the Adam opti-
mizer with a batch size of 128. The Cross-Entropy loss 
function was employed. All models in this study were 
trained on an NVIDIA RTX 3090 Ti 24GB GPU. The 
Swin-T was fully pre-trained through 200 epochs on the 
CIFAR-100 dataset. After that, the bottom module was 
frozen to conduct the transfer learning until the loss pla-
teaued (Supplementary Fig. S1).

Adaptive cropping  To minimize the adverse effects 
introduced by scanning discrepancies, the patch-level 
view was fixed at ( 512× 512 ) pixels for every gigapixel in 

Fig. 1  Data collection. A total of 578 HE-stained WSIs from five BC cohorts were included in this study. Cohort A: 175 cases at a scanning 
magnification of ×40 . Cohort B: 191 cases at a scanning magnification of ×20 . Cohort C: 74 cases at a scanning magnification of ×40 . Cohort D: 76 
cases at a scanning magnification of ×40 . Cohort NAT: 62 cases at a scanning magnification of ×20 . *The HER2 annotation categorized as positive 
or negative only. N/A Not available
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the validation stage. First, the height ( h ) and width ( w ) 
of each WSI were measured using the Openslide package 
[27]. Second, the view scale can be calculated by a ratio 
of total pixels ( h× w ) to a gigapixel, as shown in Eq. (1).

Patch analysis  To further explore the connection 
between the HE-stained patch and the IHC-staining 
intensity, 39 patch features were defined in Supple-
mentary Table  S2. Then, we divided the p(HER2+) into 
5 grades: Grade I, 0.33 ≤ p(HER2+) < 0.4 ; Grade II, 
0.4 ≤ p(HER2+) < 0.5 ; Grade III, 0.5 ≤ p(HER2+) < 0.6 ; 
Grade IV, 0.6 ≤ p(HER2+) < 0.7 ; and Grade V, 

(1)cropping size = 512×

√

h× w

1e9

Fig. 2  Model frameworks. A Framework 1, Sub-Classifier Aggregation. During training, HE-stained WSIs were cropped into patches of different 
sizes ( 1024× 1024 , 2048× 2048 ), with background patches ( variance < 500 ) excluded. Tumor patches were selected using manual annotation 
masks for Swin-T-based transfer training. During testing, patch-level predictions were made using the sub-classifier, and WSI-level predicted 
scores were obtained through probabilistic aggregation. B Framework 2, Multi-Instance Learning (MIL). This general MIL structure included (1) WSI 
cropping, (2) feature extraction using a pre-trained backbone model, (3) producing pseudo-labels with similarity measure (4) model training based 
on attention-based or graph-based learning

Table 1  Patches for transfer learning

(·) denotes the numbers of patches randomly used for actual training

Patch size HER2− HER2+ Non-tumor

1024 × 1024 90,664 (63,464) 97,264 (68,084) 142,336 (69,744)

2048 × 2048 15,441 16,149 21,877 (15,313)
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0.7 ≤ p(HER2+) . The remarkable features were revealed 
through the Dunn’s test with a P value < 0.05.

Probabilistic aggregation  Let p(HER2+) denoted the 
IHC-staining intensity of a patch, and set p(HER2+) > 0.33 
as the cut-off value of the IHC-staining area. The score of 
probabilistic aggregation can be expressed as Eqs. (2–6).

where N(∗) denoted the number of classes and Sort(·) 
denoted the descending sorting function. The proposed 
mapping between this probabilistic aggregation and the 
clinical IHC reference was described in Supplementary 
Table S3 [28]. Consequently, the transfer-learning-based 
probabilistic aggregation (TL-PA), a method belong-
ing to the sub-classifier aggregation framework, was 
constructed.

Multi‑instance learning
Two MIL-based models, namely, clustering-con-
strained-attention multiple-instance learning (CLAM) 
using attention-based learning and SlideGraph+ using 
graph-based learning, were evaluated in this study [14, 
16]. The pre-trained backbone models employed the 
ResNet50 with weights loaded from PyTorch [https://​
downl​oad.​pytor​ch.​org/​models/​resne​t50-​0676b​a61.​pth]. 
The Swin-T with weights were loaded from our trans-
fer learning. For the objective of instance aggregation 
shifted from universal visual features to task-specific 
pathology features, models that incorporate transfer 
learning were considered a variant of MIL. As a result, 
they were referred to as TL-CLAM and TL-Slide-
Graph+. The preprocessing steps, including staining 
normalization and adaptive cropping, were consistent 
with those in Framework 1.

(2)Area(tumor) = N(HER2+) +N(HER2−)

(3)Area(IHC−staining) =
N[p(HER2+)>0.33]

Area(tumor)

(4)

P =

{

Sort(p1(HER2+), p2(HER2+), · · · , pn(HER2+))
}

,

n = N
[p(HER2+)>0.33]

(5)Meanp(HER2+)
=

∑0.3×Area(tumor)

i=1 (Pi − 0.33)

0.3× Area(tumor)

(6)
Score =

{

0, Area(IHC−staining) ≤ 0.3, and ,MeanP(HER2+)
≤ 0.17

Meanp(HER2+)
, Area(IHC−staining) > 0.3 or MeanP(HER2+)

> 0.17

Model evaluation
Five validation cohorts were employed for model 
evaluation. The performance of binary classification 
(HER2+ vs. HER2−/non-pCR vs. pCR) was evaluated 
by the area under the receiver operating characteristic 
curve (AUC). The correlation between the scores dis-
tribution and HER2 status, as well as RCB grades, was 
analyzed via the Spearman rank correlation and Dunn’s 
test. P < 0.05 was considered to indicate a significant 
difference.

Results
Patch‑level prediction in TL‑PA
After 200 epochs of full training and 20 epochs of trans-
fer learning, the accuracy of the training set plateaued at 
0.61. The patches from the four validation cohorts inher-
ited their corresponding WSI-level label (HER2 positive 
or negative). Subsequently, the ROC curve at the patch-
level was illustrated in Fig. 3. The AUCs of the four vali-

dation cohorts were approximately 0.6. Meanwhile, the 
accuracy in validation set from cohort A to D was 0.35, 
0.44, 0.23, and 0.38, respectively. These results suggested 
that our training set included a considerable amount 
of paradoxically labelled data. This demonstrated that 
not the whole area of the HE-stained WSI required our 
attention.

Fig. 3  The ROC curve at the patch-level in the validation sets. The 
AUC values of Cohort A, Cohort B, Cohort C, and Cohort D were 0.59, 
0.60, 0.61, and 0.59, respectively

https://download.pytorch.org/models/resnet50-0676ba61.pth
https://download.pytorch.org/models/resnet50-0676ba61.pth
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The patch analysis indicated that higher-grade patches 
exhibited lower and more dispersed frequency domain 
energy, along with a reduced cell count, as shown in Fig. 
S2 (A–C). The Dunn’s tests for “Lab-A_dft_1_mean”, 
“Lab-A_dft_1_var”, and “cells_num” were described in 
Fig. S2 (D–F). All P values in Fig. S2 (D-F) was found to 
be less than 0.05, except for the amplitude variance in 
Lab-A’s frequency domain between Grade IV and Grade 
V.

The feature visualization in Fig. S3 demonstrated a 
positive correlation between the patch probability and 
the invasion degree of carcinoma cells. In this context, 
all adipose tissues, regardless of the presence of cancer-
ous lesions, were categorized as Grade I. Stromal, ductal, 
and lobular tissues, with no or mild infiltration, were 
classified as Grades I to III. Grade IV was considered 

moderate-level stromal infiltration and solid tumors. 
High-level ductal or lobular infiltration was classified as 
Grade V.

WSI‑level prediction
As shown in Fig.  4, the TL-PA model achieved the 
highest and most robust AUCs across four validation 
cohorts, with an AUC of 0.75 in the internal validation 
set (Cohort A) and 0.76 ± 0.01 in the external validation 
sets (Cohorts B, C, and D). Under the same training con-
ditions, the MIL-based models exhibited weaker gener-
alization abilities. Specifically, TL-SlideGraph+ achieved 
an AUC of 0.68 in the internal validation set (Cohort A) 
and 0.66 ± 0.08 in the external validation sets (Cohorts 
B, C, and D). TL-CLAM achieved an AUC of 0.57 in the 
internal validation set and 0.64 ± 0.04 in the external vali-
dation sets. The ResNet50-CLAM model, as originally 

Fig. 4  ROC curves for model evaluation. A TL-PA: AUCs in Cohort A to D were 0.75, 0.75, 0.77, and 0.77; B TL-SlideGraph+: AUCs in Cohort A to D 
were 0.68, 0.73, 0.69, and 0.55; C TL-CLAM: AUCs in Cohort A to D were 0.57, 0.62, 0.70, and 0.60; D ResNet50-CLAM: AUCs in Cohort A to D were 0.74, 
0.58, 0.65, and 0.57
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implemented, performed well in the internal validation 
set with an AUC of 0.74, but exhibited the lowest AUC of 
0.60 ± 0.04 in the external validation sets.

A more detailed comparison between our work and 
previous studies was provided in Table  2. This com-
parison included the required training stages, feature 

dimensions for instance aggregation, types of instance 
aggregation, and performance on the shared TCGA-
BRCA cohort. The results showed that the sub-classifier 
framework with rule-based aggregation demonstrated 
superior performance in HER2 scoring.

Table 2  Comparison of models between our work and previous studies

std standard deviation, N/A Not available, DAB 3,3’-Diaminobenzidine, MLP Multi-Layer Perceptron, – No additional training required
a The best performance on TCGA-BRCA, as reported in the original paper
b The performance of M6 (included 5-level HER2 status data) on TCGA-BRCA, as reported in the original paper

The best performance for each method was highlighted in bold

Method Training stage Feature 
dimension

Aggregation method Internal validation External validation

Feature 
extraction

Instance 
aggregation

AUC​ AUC (mean ± std)

TL-PA √ – N/A Rule-based 0.75 0.76 ± 0.01
TL-SlideGraph+ √ √ 768 Graph-based 0.68 0.66 ± 0.08

TL-CLAM √ √ 768 Attention-based 0.57 0.64 ± 0.04

ResNet50-CLAM [16] – √ 1024 Attention-based 0.74 0.60 ± 0.04

Farahmand et al. [12] √ – N/A Rule-based 0.81a N/A

Rawat et al. [11] √ √ 512 MLP-based 0.71a N/A

DAB-SlideGraph+ [14] √ √ 4 Graph-based 0.75 ± 0.02a N/A

Valieris et al. [17] – √ 1024 Attention-based 0.61 ± 0.01b N/A

Fig. 5  Correlation analysis of the predicted scores and the true HER2 status in TL-PA. A, D Boxplots illustrating the predicted scores for Cohorts C 
and D, featuring Spearman rank correlation coefficients of 0.369 and 0.371, respectively (both with P(Spearman) = 0.001 ). B, E Dunn’s test correlation 
heatmaps of predicted scores in Cohorts C and D, revealing statistical differences only between HER2-positive and HER2-negative cases ( P < 0.05). 
C, F Confusion matrices of 5-level HER2 classification in Cohorts C and D
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Selecting TL-PA as the representative model, we con-
ducted further analysis on the rank correlation between 
its scores and the 5-level HER2 classification (0, 1+, 
2+&FISH−, 2+&FISH+, and 3+), based on data from 
Cohorts C and D. The correlation analysis revealed that 
the distribution of predicted scores for intra-class (HER2 
positive or negative) did not exhibit a clear monotonic 
or separable pattern compared to the true HER2 status 
(Fig.  5A, D). Dunn’s tests indicated no significant pair-
wise differences within the intra-class (Fig.  5B, E). The 
Spearman rank correlation coefficients for Cohort C and 
D were 0.371 and 0.369 (both P = 0.001 ), indicating a 
weak correlation.

Additionally, thresholds set for the 5-level HER2 classi-
fication to present the confusion matrix for Cohorts C and 
D (Fig. 5C, F) were as follow: 0 ≤ score ≤ 0.1 for HER2 
0, 0.1 < score ≤ 0.15 for HER2 1+, 0.15 < score ≤ 0.2 
for HER2 2+&FISH−, 0.2 < score ≤ 0.25 for HER2 
2+&FISH+, 0.25 < score for HER2 3+. A upward shift 
of approximately 0.5 in predicted scores was observed in 
Cohort D when compared to Cohort C. TL-PA achieved 
the optimal AUCs for HER2 binary classification, yet 
notable misclassification occurred in the more granular 
classification task.

The WSI-level prediction heatmap for Cohort C was 
depicted in Fig.  6. In the showcased samples, model 
scores consistently increased with escalating HER2 sta-
tus (from 0 to 3+). Our probabilistic aggregation method 
allowed TL-PA to prioritize the expression intensity of 
tumor patches over their mere quantity. This was demon-
strated in the HER2 2+&FISH+ sample, where a relatively 

high score was given to fewer highlighted patches. This 
behavior was consistent across all cohorts, aligning with 
the intensity-based, limited-scope rule for aggregation. 
In essence, the model’s attention centered on malignant 
lesions, with a core-to-peritumoral probability decrease 
pattern as the malignancy spread outwards from the 
lesion’s core.

Correlation with NAT
With TL-PA, the scoring range of Cohort NAT closely 
aligned with that of the HER2-positive samples 
(2+&FISH+ and 3+) in Fig. 5A, B, with scores predomi-
nantly exceeding 0.15. This alignment underscored a 
high degree of consistency in their HER2 expression 
patterns. Additionally, the predicted scores of the pCR 
group were generally lower than those of the non-pCR 
group, as illustrated in Fig.  7A. Taking the non-pCR as 
the positive control, the AUC was 0.77 (Fig.  7B). Given 
the previously mentioned probability decrease pattern, 
the peri-tumoral environment may be more closely 
associated with NAT outcomes, particularly the stromal 
region. To further verify this hypothesis, we considered 
the 4-level RCB grades (0, I, II, and III), which provided 
a more refined assessment of NAT outcomes compared 
to the pCR. As expected, the correlation between the 
predicted scores and RCB grades was moderate (Fig. 7C, 
D, Coefficient(Spearman) = 0.45 , P(Spearman) = 0.0006 ). 
Although the score differences among RCBs I, II, and III 
were not statistically significant, the noticeable overall 
rising trend pointed to the significance of peri-tumoral 

Fig. 6  WSI-level prediction heatmap for Cohort C. From left to right: Clinical HER2 categories 0, 1+, 2+&FISH−, 2+&FISH+ and 3+. Top to bottom: 
HE-stained WSIs, probability heatmaps, and prediction visualizations. Scores for these 5 samples from TL-PA, 0 for HER2 0, 0.12 for HER2 1+, 0.19 
for HER2 2+&FISH−, 0.25 for HER2 2+&FISH+, and 0.29 for HER2 3+
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features in assessing the efficacy of HER2-targeted 
therapy.

Discussion
In this study, two frameworks for HER2 scoring were 
evaluated using limited training data and multi-cohort 
validation. The TL-PA model achieved optimal perfor-
mance but struggled to capture intra-class variability, 
particularly in HER2-negative cases. Compared to pre-
vious studies, our work highlights the potential of inte-
grating a transfer learning-based feature extractor with 
rule-based instance aggregation.

The two key components of computational pathol-
ogy, feature extraction and instance aggregation, were 

decoupled to facilitate a more effective comparison. Fea-
ture extractors in recent studies could be classified into 
three categories based on their relevance to pathology 
tasks, including backbones pre-trained on natural image 
datasets (such as ImageNet [29] or CIFAR-100 [30]), gen-
eral-purpose models for pathology [31–33], and transfer 
learning models based on task-specific datasets [12, 14]. 
The complexity of instance aggregation methods varied 
depending on the relevance of patch features to the task. 
Instance aggregation strategies could be classified into 
rule-based [12], MLP-based [11], attention-based [16, 
17], and graph-based [14] approaches.

Lu et  al. [14] demonstrated that model performance 
improved with an increase in the relevance of features 

Fig. 7  Correlation analysis of the predicted scores and NAT outcomes. A Boxplot of predicted scores in Cohort NAT, P(Dunn′sTest) = 0.0009 . B The 
ROC curve for pCR prediction ( AUC = 0.77 ). C Dunn’s test correlation heatmap of predicted scores in Cohort NAT, indicating statistical differences 
only between RCB 0 versus I ( P=0.0472) and RCB 0 versus II ( P=0.0029). D Boxplot of predicted scores in Cohort NAT; Compared to RCB grades, 
Coefficient(Spearman) = 0.45 , P(Spearman) = 0.0006
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to the task, with DAB-SlideGraph+ achieving the best 
results. They developed a feature extractor for DAB 
density estimates by aligning IHC-stained images with 
HE-stained images. However, our study indicated that, 
regardless of whether task-specific knowledge was 
embedded in the front-end feature extractors, MIL was 
struggle to achieve good HER2 scoring performance with 
limited data, as demonstrated by comparison between 
ResNet50-CLAM and TL-CLAM. Our experiments also 
revealed that transfer learning improved CLAM’s gener-
alization on external validation (TL-CLAM), although it 
might contribute to underperformance on internal vali-
dation when compared to ResNet50-CLAM. It suggested 
a trade-off between model fitting and generalization 
when embedding prior knowledge. A similar issue was 
observed in other CLAM variants. In Valieris et al.’s study 
[17], the model, based on non-task-specific pathological 
features extracted from a general-purpose model, was 
overfitted during external validation. The introduction of 
transfer learning-based feature extractors held promise 
in addressing this challenge.

Patch features with strong task relevance could be 
paired with simpler instance aggregation methods, as 
demonstrated in Farahmand et  al.’s work [12] and our 
TL-PA, which outperformed MIL-based methods. Farah-
mand et  al. initially developed a sub-classifier based on 
Inception-v3, utilizing transfer learning to predict HER2 
status, and subsequently averaged the probabilities of all 
patches to aggregate a WSI-level score. However, this 
global aggregation struggled to capture intensity-depend-
ent patterns that align with the reasoning of pathologists 
in HER2 scoring. TL-PA integrated an intensity-based 
limited-scope aggregation method to enhance inter-
pretability and generalization.  This rule-based aggre-
gation method also reduced inference costs compared 
to MIL, as it avoided complex network computations. 
With the same input data and feature extractor, the infer-
ence speed during the instance aggregation stage could 
improve from minute-level to second-level timescales. A 
patch analysis of TL-PA indicated that malignant pro-
liferation near ductal or lobular tissue was closely asso-
ciated with HER2 expression. These areas were often 
the origin of breast cancer [34]. In the patch-level view, 
expansive malignant cells proliferated outward in a low-
density cluster configuration, resulting in low cell counts 
and a relatively smooth, non-nuclear texture. These fea-
tures became the primary characteristics of patches with 
strong HER2 expression.

However, TL-PA could not fully capture the 
ordered pattern in the 5-level HER2 status. Intra-
class differences were observed primarily within the 
HER2 positive group, where the predicted score for 
HER2 3+ was generally lower than that for HER2 

2+&FISH+.  Researches  indicated  that  HER2  3+ breast 
cancer had a greater chance of pCR after receiving anti-
HER2 therapy [35, 36]. Similarly, we observed a statisti-
cal difference in the model scores between the pCR and 
non-pCR groups. RCB also exhibited an overall upward 
trend in scores as the prognosis worsened. All these 
results implied that higher scores could serve as a signifi-
cant indicator for poorer NAT. Considering the observed 
pattern of decreasing probability from the core to the 
peritumoral region in this study, the significant increase 
in stromal infiltration may be associated with a stronger 
immune response. As malignant lesions progress within 
the stroma, their susceptibility to immune cells and drugs 
may be simultaneously enhanced [37].

There were several limitations in our 
work.  First,  numerous noisy patches during transfer 
learning significantly might affect the performance of 
the TL-PA. The tumor-based binary annotation strategy 
primarily directed the sub-classifier’s focus to clustered 
lesion cores. This tendency resulted in underestimated 
scores in HER2 3+ cases, particularly those characterized 
by diffuse stromal invasion. Also it lacked distinct tumor 
cores and exhibited a more uniform expression inten-
sity across the tissue. Meanwhile, some patches from the 
positively stained regions of the HER2-negative samples 
were overlooked due to annotation limitations, making 
the identification of their highly heterogeneous internal 
grading features even more challenging. To reduce the 
blindness driven by noisy data, integrating HER2-IHC 
images to guide the model’s attention presents a promis-
ing solution. Additionally, TL-PA exhibited baseline drift 
during external validation. This drift could make defin-
ing standard boundaries for a 5-level classification chal-
lenging, a difficulty that may not be reflected by the ROC 
curve. Federated transfer learning based on foundation 
models maybe a a potential solution [38].

Conclusions
In this study, a model for HER2 scoring on HE-stained 
WSIs has established and successfully validated across 
multiple external cohorts. The feasibility of integrat-
ing a transfer learning-based feature extractor with 
rule-based instance aggregation is demonstrated. How-
ever, the model struggles to capture the 5-level ordered 
patterns consistent with pathologist reasoning. Future 
work should incorporate more granular annotations 
to strengthen the training constraints of deep learning 
models, thereby improving the reliability of automated 
quantification.
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