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of nucleosomes. Each nucleosome contains two subunits 
made of H3, H4, H2A, and H2B histones. Each histone 
contains a tail enriched with lysine (K) residues, which 
can be acetylation sites. Acetylation of histone tails can 
increase chromatin accessibility at the enhancer, pro-
moter, and transcribed regions and thus promote gene 
transcription [8] (Table  1). The “writers” of histone 
acetylation are histone acetyltransferases (HATs) cat-
egorized into four major families Gcn5-related N-acet-
yltransferases (GNATs), MYST, CREB-binding protein 
(CBP)/E1A-associated protein p300 (EP300) and steroid 
receptor coactivators (SRCs) [9, 10]. Histone acetyla-
tion is removed by histone deacetylases (HDACs), which 
include classical HDACs and sirtuins with different cel-
lular localization (Table 2) [11]. Histone acetylation also 
acts as a signal recognized by “readers” bromodomains 
(BRDs), and many chromatin-modulating proteins 
including HATs can contain BRDs [12]. In addition, both 
HDACs and HATs can have non-histone targets such as 
transcription factors (Tables 1 and 2).

Inhibitors of both writers and erasers of histone acety-
lation have been investigated as potential therapeutics for 
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Breast cancer is the most common cancer among women 
globally [1]. Breast cancer can be classified by the expres-
sion of estrogen receptor (ER) and progesterone receptor 
(PR) and amplification of human epidermal growth fac-
tor receptor 2 (HER2) [2]. Breast cancer that lacks those 
biomarkers is categorized as triple-negative breast cancer 
(TNBC) [3, 4].

Epigenetic changes contribute to tumorigenesis, pro-
gression, and metastasis of breast cancer [5]. They can 
also affect the tumor-associated immune cells, which 
play important roles in tumor growth and treatment 
response [5, 6]. Therefore, many therapeutics have been 
developed to target epigenetic factors in breast cancer 
[7]. Histone acetylation is one of the most important epi-
genetic modifications. Histones are critical components 
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breast cancer [13]. However, very few published reviews 
have an in-depth focus on these modulators. Therefore, 
here we provide a comprehensive review of current find-
ings on histone acetylation modulators and their inhibi-
tors in breast cancer. In addition, we also summarize the 
roles of tumor-promoting myeloid cells in breast cancer 
and discuss how they can also be regulated by the histone 
acetylation modulators.

HATs in breast cancer
HATs have been reported as both oncogenes and tumor 
suppressors in many cancer types including breast can-
cer [14, 15]. Histone H4K8 acetylation by KAT2B, a 
GNAT family HAT, reduced replication fork stability in 
breast cancer cells in vitro, and reduced levels of KAT2B 
may predict PARP inhibitor resistance [16]. KAT2B also 
inhibits proliferation of p53 mutant breast cancer cells in 
vitro by acetylating p53 and histones [17]. KAT5, a HAT 
of the MYST family, has been identified as a haploinsuf-
ficient tumor suppressor, and loss or low expression of 
KAT5 was observed in a fraction of breast cancer cases, 
correlating with poor prognosis [18, 19]. Another study 
showed that low expression of KAT5 led to decreased 
H3K4 acetylation and knockdown of KAT5 promoted 
the progression of MDA-MB-231 xenografts, a TNBC 
model, but not MCF-7 xenografts, an ER-positive breast 

cancer model [20]. This indicates that the role of KAT5 in 
breast cancer is complex and context dependent.

Compared to the tumor-suppressing role, more evi-
dence has been found regarding the tumor-promoting 
roles of various HATs. Acetyltransferase activity of KAT7 
(MYST family) was found to facilitate radiotherapy resis-
tance in breast cancer cells in vitro through activation 
of the PI3K/AKT pathway [21]. KAT2B, EP300, KAT6A 
(MYST family), and KAT2A (GNAT family) are recruited 
to ER-responsive promoters and are critical for estrogen-
dependent proliferation of ER-positive breast cancer cells 
[22–24]. KAT6A was found to be frequently amplified 
and/or overexpressed in breast cancer and has been cor-
related with worse prognosis in ER-positive breast cancer 
patients [24, 25]. Moreover, the silencing of ATF2 (GNAT 
family) reduced the expression of genes associated with 
endocrine therapy resistance in ER-positive breast cancer 
cells in vitro [26]. The SRC family HATs are transcrip-
tion coactivators for steroid hormone receptors including 
ER and PR and can acetylate steroid hormone receptor-
responsive promoters [27–30]. SRC-1 and SRC-3 also 
facilitate endocrine therapy resistance and activate breast 
cancer-promoting genes in an ER-independent manner 
[27, 31]. In addition, CBP/EP300 also activates transcrip-
tion of the androgen receptor (AR) and thus promotes 
AR signaling in AR-positive breast cancer model MDA-
MB-453 in vitro and in vivo [32].

Table 1  The targets and functions of histone acetyltransferases (HATs)
Targets HAT family Functions
Histones: H2A, H2B, H3, H4 All families • Increase chromatin accessibility

• Promote transcription activation [29, 39, 40]
Transcription factors (e.g. p53, STAT3, c-Myc, 
cyclins, PTEN)

GNATs (KAT2A, KAT2B)
CBP/EP300
MYST (KAT5)

• Increase or decrease the affinity of transcription factors 
to DNA (site-dependent) [40, 41]
• Promote interaction and transactivation [40, 42]
• Prevent or promote ubiquitination and degradation [40]

Nuclear receptors CBP/EP300
MYST (KAT5)

• Facilitate transactivation of the receptors [43, 44]
• Regulate ligand sensitivity [45]

DNA repair proteins (Ku70, ATM) CBP
GNATs (KAT2B)
MYST (KAT5)

• Activate ATM activity in response to DNA damage [46]
• Disrupt Ku70 interactions to promote apoptosis [47]

Table 2  Family, class, localization, and functions of histone deacetylases (HDACs)
Family Class Members Localization Function
Classic Class I HDAC1, HDAC2, 

HDAC3, HDAC8
Nucleus only Deacetylate histones to directly modulate genome acces-

sibility [109].
Deacetylate key transcription factors (e.g. p53) [110, 111].

Class IIA HDAC4, HDAC5, 
HDAC7, HDAC9

Cytoplasm and Nucleus Scaffold for transcription repression [112].
Deacetylate transcription factor MEF2 [113].

Class IIB HDAC6, HDAC10 Cytoplasm (mostly) Deacetylate and stabilize microtubules [114].
Promote autophagy to mediate cell survival [115].

Sirtuins (SIRT) Class III SIRT 1–7 Cytoplasm and Nucleus Deacetylate histones [116, 117].
Deacetylate transcription factors (e.g. p53, NF-κB) [118].
Deacetylate tubulins [119].
ADP-ribosylation of PARP1 to promote DNA repair [120].

Classic Class IV HDAC11 Cytoplasm and Nucleus Scaffold for transcription repression at Il10 promoter [121].
Defatty-acylation [122].
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Besides activating the transcription of hormone recep-
tor-responsive genes, HATs can also promote epithelial-
mesenchymal transition (EMT). EMT describes a process 
in which epithelial cells lose their polarity and junctions 
to gain mesenchymal traits [33]. It is associated with 
breast cancer invasion, migration, metastasis, and stem-
cell-like phenotypes [34]. In TNBC, enrichment of the 
EMT gene signature was found in residual tumors after 
neoadjuvant chemotherapy [35]. Multiple HATs were 
found to be involved in EMT activation. KAT2A induced 
EMT in breast cancer cells by activating the transforming 
growth factor-β (TGF-β)/Smad pathway, and inhibition 
of KAT2A reduced the survival, migration, and invasion 
of MDA-MB-231 cells in vitro [36]. KAT5 was shown 
to acetylate the key EMT-inducing transcription factor 
(EMT-TF) Twist to promote transcription of EMT genes 
in vitro in basal-like breast cancer cells HEK293 and 
SUM1315 [37]. In addition, EP300 induces the expression 
of key EMT regulators in non-tumorigenic breast epithe-
lial cells MCF10A by histone H3 acetylation and interact-
ing with other transcription factors such as c-Myc [38].

In summary, the functions of HATs have been primar-
ily studied in hormone receptor-positive breast cancer, 
as HATs were known to regulate the transcription of 
hormone receptor-dependent genes (Fig. 1). In contrast, 
studies investigating other roles of HATs were mostly 
conducted in breast cancer cell lines in vitro. More in 
vivo studies will be needed to further elucidate the roles 
of HATs in breast cancer, especially the hormone recep-
tor-independent subtypes.

HAT inhibitors in breast cancer
HAT inhibitors have been developed and shown to have 
antitumor efficacy in many cancer types including breast 
cancer. Most current studies focus on inhibitors of CBP/
EP300 and KAT6A/KAT6B, MYST family HATs [48].

CBP/EP300 HAT inhibitors CPI-1612 and A-485 were 
shown to inhibit the growth of ER-positive breast can-
cer in vitro and in vivo by reducing ER-dependent gene 
expression [49, 50]. However, inhibitors of the CBP/
EP300 HAT domain were not selective and not success-
ful in the clinic. In contrast, inhibitors of their BRD have 

Fig. 1  Protumor and antitumor functions of HATs and HDACs in breast cancer
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recently shown promising results [51]. BRD inhibition 
can reduce acetylation by the HAT domain, but com-
pared to HAT inhibition, BRD inhibition led to an atten-
uated effect and decreased acetylation at some unique 
sites [52]. In ER-positive breast cancer, the CBP/EP300 
BRD inhibitor GNE-049 had similar effects as A-485 in 
downregulating the expression of ER-dependent genes 
and inhibiting cancer cell proliferation [50]. In TNBC 
cells, another CBP/EP300 BRD inhibitor I-CBP112 
reduced drug efflux by repressing ATP-binding cassette 
transporters and sensitized the cells to chemotherapies 
in vitro [53]. The CBP/EP300 BRD inhibitor FT-6876 
reduced AR signaling and inhibited the growth of AR-
dependent breast cancer models in vitro and in vivo [32]. 
Our recent publication demonstrated that CBP/EP300 
BRD inhibitor IACS-70,654 reduced the proliferation and 
inhibited the metastasis of neutrophil-enriched TNBC in 
vivo [54]. However, currently Inobrodib is the only CBP/
EP300 BRD inhibitor in early clinical trials for treating 
solid tumors, including breast cancer [48]. It showed 
promising results in early clinical trials for hematological 
malignancies and prostate cancer, but its effects on breast 
cancer models/patients have not been published [55, 56].

In addition to CBP/EP300 inhibitors, the KAT6A/
KAT6B inhibitor CTx-648 demonstrated antitumor 
activity in vivo in ER-positive breast cancer models with 
resistance to endocrine therapy [57]. PF-07248144 is the 
KAT6A/KAT6B inhibitor currently in clinical trials, and 
the results from the phase 1 clinical trial were recently 
published and showed durable antitumor effects in meta-
static ER-positive HER2-negative breast cancer [58].

Taken together, HAT inhibitors have been tested in 
breast cancer, and two inhibitors have entered early phase 
clinical trials. Most studies of HAT inhibitors focused 
on hormone receptor-positive breast cancer, most likely 
because the roles of HATs in hormone receptor signaling 
have been more extensively studied. HAT inhibitors may 
also be suitable for treating hormone receptor-indepen-
dent breast cancer, but more preclinical studies might be 
needed before more inhibitors can enter clinical trials.

HDACs in breast cancer
HDACs have been targeted for the treatment of many 
cancer types including breast cancer because of their role 
in many biological functions associated with tumor pro-
gression [59–61]. In the clinic, metaplastic breast cancer, 
an aggressive and treatment-resistant subtype, was found 
to have elevated HDAC activity [62]. Among all HDACS, 
Class I HDACs were most extensively studied. High 
expression of HDAC1 has been associated with high ER 
and PR expression in multiple studies [63–66]. In con-
trast, HDAC2 expression was found to be significantly 
higher in hormone receptor-negative breast tumors 
[64]. In ER-negative breast cancer, studies suggested 

that HDAC1 can suppress the expression of ER and its 
associated genes to promote their growth, indicating 
its complex functions [67, 68]. HDAC1 was also shown 
to induce proliferation and migration of breast cancer 
cells by upregulating Interleukin (IL)-8 signaling [69]. 
Induced cytoplasmic expression of HDAC3 has been 
associated with brain metastasis in breast cancer patients 
[70]. HDAC1, HDAC2, and HDAC8 were found to form 
a complex with EMT-TF Snail and induce EMT in breast 
cancer cells to promote migration [71–73]. However, 
HDAC1 was also demonstrated to downregulate Wnt 
signaling to reduce migration and invasion in breast 
cancer cells [74]. In addition, HDAC2 and HDAC3 were 
shown to facilitate the inhibition of vascular endothelial 
growth factor (VEGF) signaling, which promotes angio-
genesis to support tumor progression, in breast cancer 
cells in vitro [75]. These seemingly contradictory results 
can be explained by the study illustrating that HDAC1 
has distinct substrates in different breast cancer cell lines, 
highlighting the effects of tumor heterogeneity on HDAC 
functions [76].

Compared to Class I HDACs, the functions of Class II 
and IV classic HDACs are not as well characterized, but 
have also been studied in the breast cancer setting [11]. 
The loss of HDAC5 induced the expression of cell-cycle 
genes and thus led to cyclin-dependent kinase (CDK) 
4/6 inhibitor resistance in breast cancer [77]. In addi-
tion, HDAC5 was shown to deacetylate SOX9 to promote 
c-Myc expression and help drive endocrine therapy resis-
tance in ER-positive breast cancer in vitro [78]. HDAC6 
expression has been correlated with reduced cell motil-
ity and better response to endocrine therapy in ER-posi-
tive breast cancer cells in vitro [79, 80]. In inflammatory 
breast cancer, however, HDAC6 was found to have aber-
rantly high activity and was essential for cell viability [81]. 
A recent study found induced HDAC6 activity in about 
30% of breast cancer patients analyzed and suggested that 
HDAC6 deacetylates c-Myc to reduce its degradation, 
contributing to tumor cell viability [82]. Another recent 
study by Lu et al. demonstrated that phosphorylated 
HDAC6 induces aberrant chromatin architecture, which 
supports the tumor growth of TNBC [83]. HDAC11 
expression, in contrast, was correlated with better overall 
survival of breast cancer patients, and HDAC11 knock-
down led to enhanced proliferation, migration, and inva-
sion of breast cancer cells in vitro [84]. Nevertheless, 
another study showed using mouse models that HDAC11 
facilitates the growth of breast cancer lymph node metas-
tases while inhibiting the migration from lymph node to 
distant organs [85].

Besides classic HDACs, sirtuins (SIRT) have also been 
extensively studied in breast cancer. SIRT1 is overex-
pressed in ER-positive breast cancer and was shown 
to promote tumor progression by facilitating ER and 
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estrogen-related receptor signaling [86–88]. SIRT1 was 
also demonstrated to promote breast cancer formation 
by interacting with and promoting the activity of AKT 
[89]. In TNBC, however, SIRT1 is downregulated, and the 
loss of SIRT1 may promote tumor invasion and survival 
by impairing lysosomal integrity [90]. Elevated expres-
sion of SIRT1 has also been associated with higher rates 
of metastasis in TNBC but lower rates in all other types 
of breast cancer [91]. High protein expression of SIRT2 
was correlated with poor prognosis in high-grade breast 
cancer, but the correlation was reversed in intermedi-
ate-grade breast cancer [92]. In basal-like breast cancer, 
SIRT2 can be overexpressed and stabilize EMT-TF Slug 
to promote tumor invasion and stem-like phenotypes 
[93]. However, SIRT2 expression was shown to sensitize 
breast cancer cells to oxidant stress-inducing agents by 
modulating peroxidase activity [94]. It also was dem-
onstrated to inhibit tumor growth by deacetylating M2 
isoform of pyruvate kinase, thus altering glucose metab-
olism [95]. SIRT3 was correlated with poor prognosis 
in breast cancer patients, but decreased mitochondrial 
expression of SIRT3 was associated with poor prognosis 
[96, 97]. Multiple studies have demonstrated the tumor-
suppressing role of SIRT3 in reprogramming cancer cell 
metabolism in the mitochondria [98, 99]. Distinct from 
other SIRTs, multiple studies of SIRT4 agreed that it is 
tumor-suppressive. Decreased SIRT4 has been associated 
with poor prognosis and induced stemness in breast can-
cer [100, 101]. In addition, SIRT4 can inhibit IL-6/STAT3 
signaling to improve the response of ER-positive breast 
cancer to endocrine therapy [102]. SIRT5 is another SIRT 
that plays an important role in cancer metabolism to pro-
mote breast cancer progression. SIRT5 can induce the 
expression of glutaminase and promote aerobic glycolysis 
in breast cancer [103, 104]. SIRT6 facilitates mammary 
tumorigenesis by increasing oxidative phosphorylation 
and has been associated with poor prognosis in HER2-
positive breast cancer [105, 106]. SIRT7 can inhibit 
metastasis of breast cancer by inhibiting TGF-β signal-
ing, and HDAC8 can suppress the expression of SIRT7 to 
promote cancer cell survival and migration [107, 108].

In summary, HDACs are much more extensively stud-
ied in breast cancer than HATs, but most HDACs were 
found to both inhibit and promote breast cancer depend-
ing on the cell context, and some studies reported 
seemingly contradictory results (Fig.  1). These findings 
indicate that the functions and targets of HDACs are not 
the same across all breast cancers and can be dependent 
on the subcellular location of the HDAC, breast cancer 
subtype, metastatic status, hormone receptor expression, 
and tumor grade. Therefore, all those factors will need to 
be considered when targeting HDACs in breast cancer.

HDAC inhibitors in breast cancer
Although the roles of HDACs in breast cancer are com-
plicated and heterogeneous, many HDAC inhibitors 
have exhibited antitumor effects in preclinical models of 
breast cancer [123]. However, to date, no HDAC inhibi-
tor has been approved for the treatment of breast can-
cer. HDAC inhibitors currently in active clinical trials 
are vorinostat, belinostat, romidepsin, entinostat, and 
tucidinostat (Table 3). Vorinostat is a pan HDAC inhibi-
tor and the first HDAC inhibitor approved by the Food 
and Drug Administration (FDA) [124]. In preclinical 
models of breast cancer, it was shown to induce apop-
tosis and autophagy while inhibiting proliferation, EMT, 
and migration [125]. In addition, vorinostat was found to 
induce ER degradation and improve the response of ER-
positive breast cancer cells to endocrine therapy [126]. 
Breast cancer patients treated with vorinostat as a single 
agent failed to show an adequate response in the clinical 
trial [127]. The published clinical study of vorinostat in 
combination with endocrine therapy or chemotherapy 
showed encouraging results, but it never entered late-
phase clinical trials for breast cancer (Table 3) [128–130]. 
Similar to vorinostat, belinostat is also an FDA-approved 
pan HDAC inhibitor still in early-phase clinical trials for 
breast cancer [131] (Table 3). In TNBC cells in vitro, beli-
nostat induced cell apoptosis and showed possible syn-
ergy with chemotherapy [132]. Belinostat also exhibited 
synergistic effects with the PARP inhibitor olaparib in 
BRCA1-mutated TNBC cells and xenografts [133]. Cur-
rently, no clinical trial results have been published for 
belinostat.

Romidepsin and entinostat are Class I HDAC inhibi-
tors, different from vorinostat and belinostat. Romidep-
sin inhibits HDAC1 and HDAC2 specifically and is 
FDA-approved [134]. In a preclinical model of inflam-
matory breast cancer, romidepsin treatment led to the 
destruction of tumor emboli and lymphatic vascu-
lar structure, inhibiting the growth of primary tumors 
and metastases in combination with paclitaxel [135]. In 
TNBC preclinical models, romidepsin in combination 
with gemcitabine and cisplatin inhibited tumor growth, 
EMT, invasion, and metastasis [136]. In contrast, entino-
stat inhibits HDAC1 and HDAC3 but not HDAC2. The 
effects of entinostat have been studied across all subtypes 
of breast cancer. Entinostat was shown to induce the 
expression of ER in ER-negative breast cancer and sen-
sitize it to endocrine therapy in vitro and in vivo [137]. 
Entinostat also inhibited tumor-initiating cells in TNBC 
[138]. In preclinical models of HER2-positive breast can-
cer, entinostat exhibited combinational synergistic effects 
with the HER2/epidermal growth factor receptor (EGFR) 
dual tyrosine kinase inhibitor to inhibit tumor progres-
sion, sensitizing tumor cells to anti-HER2 treatments 
[139]. For ER-positive breast cancer, entinostat reversed 



Page 6 of 16Yuan and Rosen Breast Cancer Research           (2025) 27:49 

endocrine therapy resistance in a xenograft model by 
reducing HER2 expression [140]. However, in the phase 
3 clinical trial, entinostat did not improve the overall sur-
vival of ER-positive breast cancer patients resistant to 
endocrine therapy [141]. Moreover, entinostat in combi-
nation with azacitidine, a DNA methyltransferase inhibi-
tor, showed limited benefits to breast cancer patients in 
a phase 2 clinical trial [142]. Recent early-phase clinical 
trials are investigating the effects of entinostat in com-
bination with immune checkpoint blockade in advanced 
breast cancer [143] (Table 3).

Tucidinostat is distinct from other HDAC inhibitors 
because it inhibits HDAC1-3 (Class I) and HDAC10 
(Class II). It is approved by the Chinese and Japanese 
FDAs but not the United States FDA and is currently in 
many more clinical trials than all other HDAC inhibitors 
(Table 3). Tucidinostat was shown to promote autophagy 
and apoptosis in breast cancer cells in vitro and improve 
the response to doxorubicin in vivo [144]. In addition, 
tucidinostat was demonstrated to improve the response 
of AR-positive TNBC to AR antagonists [145]. Extensive 
clinical trial results have demonstrated that tucidinostat 
in combination with endocrine therapy provided thera-
peutic benefits to patients with advanced ER-positive 

breast cancer, but adverse events from the treatment 
were a potential concern [146–149].

Besides those in active clinical trials, panobinostat is 
another pan HDAC inhibitor approved by the FDA and 
tested in breast cancer. Preclinical studies indicated that 
panobinostat induces autophagy in breast cancer cells 
and inhibits TNBC in vitro and in vivo [150, 151]. Pano-
binostat was also shown to reduce aromatase expression 
in ER-positive breast cancer and synergize with endo-
crine therapy [152]. In the published phase 1 clinical trial 
of panobinostat in combination with endocrine therapy, 
a partial response was observed with the highest dose 
[153]. Other clinical trials of panobinostat in breast can-
cer were terminated, withdrawn, or completed, but with 
no published results.

In addition to the ones mentioned, HDAC inhibitors 
such as mocetinostat and abexinostat have also been 
tested in the preclinical models of breast cancer. Moceti-
nostat, an inhibitor of HDAC1-3 and HDAC11, induced 
the expression of tumor suppressor Fyn-related kinase in 
basal-like breast cancer and showed antitumor effects in 
those overexpressing HDAC2 [154, 155]. Our previous 
study demonstrated that mocetinostat in combination 
with azacitidine reduced the growth of mesenchymal 
TNBC in vivo [156]. Abexinostat, a pan HDAC inhibitor, 

Table 3  HDAC inhibitors in currently active clinical trials for breast cancer. All trial information was obtained from clinicaltrials.gov. 
PD1: programmed cell death protein 1; CTLA4: cytotoxic T-lymphocyte associated protein 4
Drug name Phase Conditions In combination with NCT number
Vorinostat 1 Relapsed/refractory and/or metastatic 

breast cancer
PARP inhibitor olaparib NCT03742245

1 Operable HER2- breast cancer Chemotherapy carboplatin
Chemotherapy nab-paclitaxel

NCT00616967

Belinostat 1 Metastatic TNBC CDK4/6 inhibitor ribociclib NCT04315233
1 Metastatic breast cancer PARP inhibitor talazoparib NCT04703920

Romidepsin 1/2 Metastatic TNBC
BRCA mutation-associated recurrent/meta-
static breast cancer

Chemotherapy cisplatin
Anti-PD1 nivolumab

NCT02393794

Entinostat 3 Advanced/metastatic ER+/PR+/HER2- 
breast cancer

Endocrine therapy exemestane NCT02115282

1 Advanced/metastatic HER2- breast cancer Anti-PD1 nivolumab and anti-CTLA4 
ipilimumab

NCT02453620

Chidamide (Tucidinostat) 2 Metastatic TNBC Chemotherapy capecitabine NCT05390476
Anti-PD1 zimberelimab NCT05632848

1/2 Advanced TNBC Chemotherapy vincristine NCT05747313
2 Advanced ER+/PR+/HER2- breast cancer Chemotherapy nab-paclitaxel NCT05633914

PARP inhibitor fluzoparib NCT05085626
2 Early ER/PR-low, HER2- breast cancer Anti-PD1

Chemotherapy paclitaxel
NCT05749575

1/2 Metastatic/relapsed ER+/PR+/HER2- breast 
cancer failed CDK4/6 inhibitor treatment

CDK4/6 inhibitor abemaciclib
Endocrine therapy

NCT05464173

1/2 Chemotherapy eribulin NCT05335473
2 Endocrine therapy

Chemotherapy capecitabine
NCT05411380

2 Advanced ER+/PR+/HER2- breast cancer 
with PIK3CA mutation

mTOR inhibitor everolimus
Endocrine therapy

NCT05983107



Page 7 of 16Yuan and Rosen Breast Cancer Research           (2025) 27:49 

was shown to reduce cancer stem cells in breast cancer 
with low Xist expression [157]. Our previous findings 
demonstrated that mocetinostat and abexinostat can 
reverse EMT in in vitro models of mesenchymal breast 
cancer [156].

Compared to inhibitors of classic HDACs, SIRT inhibi-
tors have not been as extensively studied in breast cancer. 
SIRT inhibitors MHY2256, Sirtinol, and Salermide were 
shown to inhibit the growth of breast cancer cells in vitro 
and in vivo by increasing p53 acetylation to induce cell 
death [158, 159]. TM, a SIRT2 inhibitor, induced the deg-
radation of c-Myc and thus inhibited the growth of breast 
cancer cells and xenograft models [160]. Studies also sug-
gested that sirtuin inhibitors might be able to overcome 
chemotherapy resistance in breast cancer, but those were 
not recent studies and were limited to in vitro treatments 
[91]. A more recent study showed that SIRT5 inhibitors 
have antitumor activity in breast cancer models [161]. 
However, to date, SIRT inhibitors have not entered any 
clinical studies.

In summary, despite the positive results seen in the 
preclinical setting, most HDAC inhibitors did not show 
impressive results in late-phase clinical studies for breast 
cancer. Moreover, a recent study suggested that HDAC 
inhibitors might promote breast cancer metastasis [162]. 
This again indicates that the roles of HDACs are com-
plex. To improve their efficacy, especially in the clinic, 
biomarkers and more in-depth mechanistic studies will 
be needed to further elucidate the effects of HDAC inhi-
bition. In addition, toxicity and selection of the combina-
tion therapy should also be considered and addressed in 
future studies of HDAC inhibitors.

Immunosuppressive myeloid cells in breast cancer
The tumor immune microenvironment (TIME) of breast 
cancer can elicit both antitumor and protumor effects 
[163]. Immunosuppressive cells in TIME can support 
tumor progression by promoting tumor growth, facili-
tating immune escape, contributing to metastasis, and 
affecting treatment response [164]. Myeloid cells are the 
most abundant infiltrated immune cells in many can-
cer types, including breast cancer [165, 166]. Immuno-
suppressive myeloid cells include polymorphonuclear 
myeloid-derived suppressor cells (PMN-MDSCs), mono-
cytic MDSCs (mMDSCs), and immunosuppressive sub-
sets of tumor-associated macrophages, monocytes, and 
dendritic cells (DCs) [167–169].

PMN-MDSC
PMN-MDSCs resemble many features of classical neu-
trophils, and most studies indicate that they origi-
nate from granulocytic lineage but are immature and 
pathologically activated [167, 169]. One study by Mas-
tio et al. suggested that monocytic precursors can also 

differentiate into PMN-MDSCs [170]. The nomencla-
ture of PMN-MDSCs has been controversial and evolved 
over time. In humans, PMN-MDSCs are defined as 
CD11b+CD33+HLA−DR−/lowCD14−CD15+(or CD66b+), 
and in mice, they are defined as CD11b+Ly6G+Ly6Cmid/low 
[171, 172]. There were no markers to distinguish PMN-
MDSCs and neutrophils in mice, and therefore PMN-
MDSCs can only be defined based on functional studies 
that assess the immunosuppression activity [171]. Our 
previous study indicated that TANs of neutrophil-
enriched breast cancer suppress T cells and should be 
considered PMN-MDSCs [173]. Recently, CD84 was 
identified as an emerging marker to identify MDSCs in 
breast cancer [174]. Multiple studies showed that tumor-
secreted cytokines such as granulocyte and granulocyte-
macrophage colony-stimulating factors (G-CSF and 
GM-CSF) skewed the differentiation of hematopoietic 
cells towards myelopoiesis in the bone marrow (BM) 
[175–177]. The overproduction of neutrophils in BM 
leads to neutrophil accumulation in the blood and spleen 
[173, 174]. The recent study by Alshetaiwi et al. demon-
strated that neutrophils become PMN-MDSCs through 
an abnormal maturation trajectory in the spleen [174]. 
In contrast, our previous study showed that BM neu-
trophils in mammary tumor-bearing mice are immu-
nosuppressive [173]. The study by Patel et al. suggested 
that BM neutrophils become immunosuppressive only 
in mice bearing late-stage tumors, providing a possible 
explanation for different findings in the two studies [178]. 
How BM neutrophils acquire immunosuppressive activ-
ity still needs to be further elucidated. PMN-MDSCs are 
recruited to the mammary tumor by chemokines such as 
C-X-C motif chemokine ligand 2 (CXCL2) [179, 180]. In 
tumors, PMN-MDSCs inhibit antitumor immune cells 
such as cytotoxic T lymphocytes (CTL) by producing 
reactive oxygen species and arginase 1 (Arg1) [172]. They 
also promote the activation and expansion of immuno-
suppressive regulatory T cells (Tregs) [181]. Breast can-
cer highly infiltrated with PMN-MDSCs is resistant to 
immune checkpoint blockade (ICB) [173]. Besides affect-
ing immune cells, PMN-MDSCs also promote breast 
cancer initiation and support metastatic outgrowth by 
reverting the EMT phenotype [180, 182–184].

Monocytes and mMDSCs
Monocytes can give rise to macrophages and DCs, but 
some tumor-associated monocytes can be immunosup-
pressive without differentiation [169]. Monocytes can 
be categorized into classical and non-classical mono-
cytes. Classical monocytes are defined as CD14highCD16− 
(human) or CD11b+Ly6G−Ly6C+ (mouse), whereas 
non-classical are defined as CD14lowCD16+ (human) 
or CD11b+Ly6G−Ly6Clow (mouse) [171, 185]. Classical 
monocytes exhibiting an inflammatory phenotype were 
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shown to suppress CTLs and facilitate tumor metastasis 
in breast cancer models [186–188]. Those monocytes are 
recruited to the tumor by C-C motif ligand (CCL) 2 - C-C 
motif chemokine receptor 2 (CCR2) signaling [187]. In 
contrast, non-classical monocytes were demonstrated to 
inhibit breast cancer metastasis [189].

Tumor-associated mMDSCs are very similar to 
classical monocytes in marker expression. Human 
mMDSCs are defined as CD11b+CD33+HLA-DR−/low 
CD14+CD15− [172]. Mouse mMDSCs were defined as 
CD11b+Ly6G−Ly6C+, and those classic markers cannot 
distinguish mMDSCs from monocytes as both origi-
nate from monocytic precursors [172]. Similar to PMN-
MDSCs, mMDSCs are immature myeloid cells and are 
the result of tumor-dependent abnormal cell activation. 
The study by Alshetaiwi et al. indicated that CD84 can 
also be used to identify mMDSCs from monocytes in 
breast cancer, in addition to distinguishing PMN-MDSCs 
from neutrophils [174]. Similar to that of PMN-MDSCs, 
the first step of mMDSC production is the abnormal 
expansion of BM myeloid cells driven by tumor-derived 
cytokines such as G-CSF, TGF-β, and IL-34 [190, 191]. 
Those cytokines also promote the immunosuppres-
sive activity of mMDSCs. The release of mMDSCs from 
BM was shown to be regulated by tumor-derived factor 
PTH1R in a breast cancer model [192]. However, stud-
ies demonstrated BM and spleen mMDSCs of mammary 
tumor-bearing mice are not immunosuppressive, sug-
gesting that they gain immunosuppressive activity when 
they reach the tumor [192, 193]. In addition, the study 
by Calvert et al. indicated that tumor mMDSCs have a 
limited ability to differentiate, while the study by Biswas 
et al. suggested that exosomes secreted by mesenchymal 
stem cells can promote differentiation of mMDSCs to 
protumor TAMs in breast cancer [193, 194]. The recruit-
ment of mMDSCs and monocytes is facilitated by CCL2 
and CCL5 in breast cancer [195]. T-cell suppression by 
mMDSCs is driven by the production of nitric oxide 
and Arg1 [195]. Moreover, recently, a study by Sarkar 
et al. showed that mMDSCs suppress CTLs by releas-
ing adenosine in mouse models of multiple cancer types 
including breast cancer [196]. This study also showed 
that increased adenosine levels were a result of CD73 
expression, which was induced by tumor-derived pros-
taglandin E2. Furthermore, mMDSCs also induce EMT 
in tumor cells to support the dissemination and accord-
ingly metastasis in mouse models of breast cancer [184]. 
Elevated levels of mMDSCs have been correlated with 
poor clinical outcomes in patients with metastatic breast 
cancer [197].

Tumor-associated macrophages
Tumor-associated macrophages (TAMs) are defined 
as CD11b+Gr-1−F4/80+ in mice and CD14+CD68+ in 

humans. Many early studies categorized TAMs into 
M1-like (antitumor) and M2-like (protumor) TAMs, but 
the field has realized that this binary system is oversim-
plified [198, 199]. Recently, the development of single-
cell omics has further revealed the heterogeneity in TAM 
phenotypes and complexity in TAM biology [200]. In 
breast cancer, TAMs can arise from both tissue-resident 
macrophages and monocytes recruited to the tumor by 
tumor-derived cytokines [201, 202]. High TAM infiltra-
tion is associated with the more aggressive Claudin-low 
subtype of breast cancer, an EMT signature expression, 
and worse prognosis [173, 185]. The immunosuppres-
sive activity of TAMs in breast cancer was reported in 
many early studies dating from more than 15 years ago. 
TAMs inhibit T cell response in breast cancer TIME by 
downregulating nitric oxide synthase gene expression 
and upregulating the production of Arg1 and hypoxia-
inducible factor (HIF)-1α [203–206]. Recent studies, 
however, have mostly focused on other tumor-promot-
ing roles of TAMs. A subset of breast cancer TAMs has 
been found to accumulate in hypoxic regions of mam-
mary tumors and display a proangiogenic phenotype 
by activating the HIF-2α pathway and VEGF expression 
[207–210]. Many studies have demonstrated that TAMs 
induce breast cancer metastasis by promoting cancer cell 
migration, intravasation, and seeding at the metastasis as 
reviewed by Williams et al. [201]. In addition, TAMs can 
induce stem cell-like phenotypes in breast cancer cells 
through both paracrine and juxtracrine signaling [211, 
212]. Because of their roles in tumor progression, inhibi-
tors that deplete macrophages such as colony stimulating 
factor 1 receptor (CSF1R) antibodies are currently being 
tested in clinics for cancer treatment [201, 213]. However, 
besides promoting tumor progression, TAMs have the 
potential to exhibit tumor-inhibitory phenotypes [200, 
213]. Therefore, as reviewed by Rannikko and Hollmen, 
therapeutics have been developed to reprogram TAMs 
by targeting various regulatory receptors and metabolic 
enzymes [214]. HDACs were mentioned as a potential 
target for TAM reprogramming.

Dendritic cells
DCs consist of three different subtypes, plasmacytoid 
DC (pDCs), conventional DC (cDCs), and monocytic DC 
(moDCs) [215]. While most DC arise from myeloid pro-
genitors in BM, some pDC can differentiate from lym-
phoid progenitors [215, 216]. Although pCs can produce 
interferon and are involved in anti-viral immunity, they 
have been shown to facilitate immune tolerance in cancer 
settings [216, 217]. In breast cancer, tumor-derived fac-
tors such as tumor necrosis factor-α (TNF-α) reprogram 
pDCs leading to impaired interferon (IFN)-α production 
[218, 219]. The reprogrammed pDCs then promote Treg 
expansion by expressing forkhead box O3 (FOXO3) and 
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inducible costimulatory molecule ligands, and therefore 
pDCs infiltration is correlated with poor prognosis in 
breast cancer patients [220–223]. In contrast, cDCs arise 
from DC progenitors in BM and can be divided into two 
subtypes cDC1 and cDC2 [215]. Because of their antigen 
presentation and T cell priming abilities, the infiltration 
of cDCs, especially cDC1, has been associated with better 
prognosis in breast cancer patients [224]. However, the 
normal functions of cDCs can also be impaired by breast 
cancer and reprogrammed to promote immunosuppres-
sion [217]. In the PyMT breast cancer model, cDC1 was 
shown to highly express the immune inhibitory receptor 
TIM-3, inhibiting T cell recruitment [225]. Distinct from 
other DCs, moDCs differentiate from monocytes during 
inflammation and cancer [215, 217]. In breast cancer, the 
functions of moDCs have not been widely studied, but 
one study demonstrated that moDCs from breast can-
cer patients induced the proliferation of Tregs but not 
immunostimulatory T cells [226]. Although some DCs 
can gain immunosuppressive activity, DCs are important 
in stimulating antitumor immune response. Therefore, 
various therapies including those targeting epigenetic 
modulators have been developed and tested to activate 
DC-dependent immune response or promote DC infil-
tration [217].

HATs and HDACs in immunosuppressive myeloid cells
Histone acetylation can regulate the accumulation and 
phenotypes of myeloid cells in TIME. The study by Sasid-
haran Nair et al. indicated that the expression of HAT-
associated genes increased in PMN-MDSCs while that 
of HDAC-associated genes decreased [227]. In addition, 
HDAC2 was shown to facilitate the conversion of mono-
cytes to PMN-MDSCs by reducing the transcription of 
the retinoblastoma gene [228]. Several studies investi-
gated the effects of HAT inhibitors in MDSCs. The CBP/
EP300 BRD inhibitor GNE-781 reprogrammed both 
mMDSCs and PMN-MDSCs from an immunosuppres-
sive phenotype to a more inflammatory phenotype by 
inhibiting the expression of STAT-related genes, Arg1, 
and inducible nitric oxide synthase [229]. Our recent 
study also showed that CBP/EP300 BRD inhibition can 
reduce PMN-MDSCs and inhibit abnormal produc-
tion of granulocytic progenitors in BM [54]. Moreover, 
the KAT6A (MYST family HAT) was found to acety-
late SMAD3 and H3K23 to induce SMAD3 activation 
resulting in MDSC (Gr-1+) recruitment in TNBC [230]. 
This study also showed that KAT6A inhibitor WM-1119 
decreased MDSC recruitment and activated T-cell 
response when combined with ICB treatment. Many 
HDAC inhibitors have been demonstrated to reduce 
MDSC accumulation and/or functions in various cancer 
types, as reviewed by Adeshakin et al. [231]. For example, 
the low-dose HDAC inhibitor entinostat in combination 

with azacytidine inhibited the migration of mMDSCs 
and reprogrammed the mMDSCs to be more macro-
phage-like [232]. The HDAC inhibitor vorinostat reduced 
MDSC infiltration and activated T-cell response in 4T1 
tumors by inducing MDSC apoptosis [233]. This study 
also indicated that the epigenetic therapy combination 
inhibited the formation of lung metastases by disrupt-
ing the premetastatic niches supported by mMDSCs. 
Another study by Kim et al. found that entinostat in com-
bination with ICB reduced PMN-MDSCs in the breast 
cancer model 4T1 and suppressed their function [234]. 
These findings suggest that HDAC or HAT inhibitors can 
reduce immunosuppression by MDSCs and be combined 
with ICB to improve T cell activation.

As mentioned previously, targeting the epigenetic 
modulators is a potential strategy for TAM reprogram-
ming. The class IIA HDAC inhibitor TMP195 was shown 
to induce phagocytic and immunostimulatory activi-
ties of TAMs in a breast cancer mouse model [235]. The 
low-dose HDAC inhibitor trichostatin-A promoted 
antitumor phenotypes in TAMs and showed synergistic 
effects with ICB [236]. HDACs were found to mediate 
the downregulation of major histocompatibility complex 
II (MHCII) expression in TAMs, and HDAC inhibitor 
treatment restored the expression [237]. High expression 
of HDAC6 was found to promote protumor phenotypes 
in TAMs, and HDAC6 inhibition improved the response 
of breast cancer to ICB in part by stimulating an antitu-
mor immune response [238, 239]. Compared to those of 
HDACs, very few studies investigated HATs in TAMs. 
One study from Wang et al. showed that EP300 can facili-
tate the expression of IL-6, a metastasis-promoting cyto-
kine, in TAMs by increasing the acetylation of histone H3 
[240].

Compared to TAMs and MDSCs, how HATs or 
HDACs affect the DC phenotype has not been exten-
sively studied, especially in the cancer setting. HDAC1 
was found to be critical for the development of pDCs 
and cDC2, and HDAC inhibition led to altered differen-
tiation in bone marrow resulting in no pDC production 
[241, 242]. In tumor-bearing mice, HDAC1 deletion pro-
moted the activation of cDC1 and CTL in TIME [242]. In 
contrast, HDAC9 deficiency leads to reduced CD8 + DC 
infiltration and impaired antigen presentation [243]. In 
addition, inhibition of HDAC6 was shown to inhibit the 
production of immunosuppressive cytokine IL-10 in both 
TAMs and DCs [244].

Overall, these studies demonstrated that HDAC and 
HAT inhibition can reprogram the phenotypes of tumor-
infiltrated myeloid cells. However, the effects of HATs 
have not been as extensively studied compared to those 
of HDACs. These findings again emphasize the impor-
tance of having more specific inhibitors and highlight 
the importance of examining the effects on TIME while 
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testing those inhibitors for potential cancer treatment. 
Tumor-associated immune cells such as immunosuppres-
sive myeloid cells might contribute to whether tumors 
respond to HAT and HDAC inhibitors. Furthermore, 
HAT or HDAC inhibitors may facilitate T cell activation, 
and therefore combination with ICB should be consid-
ered in the future studies of those inhibitors.

Conclusion
In summary, although HATs and HDACs have opposite 
functions in modulating histone acetylation, inhibitors of 
both have been investigated as potential treatments for 
breast cancer. The functions of HATs and their inhibitors 
were mostly studied in hormone receptor-positive breast 
cancer. Currently, no HAT inhibitors are being tested in 
clinics for breast cancer specifically, but novel inhibitors 
such as those targeting CBP/EP300 BRD recently entered 
early clinical trials for solid tumor treatment. The novel 
inhibitors have been reported to be effective in inhibiting 
breast cancer and immunosuppression, but their effects 
will need to be further elucidated. Compared to HATs, 
HDACs have been more extensively investigated across 
different breast cancer subtypes and in tumor-infiltrated 
myeloid cells. The functions and targets of different 
HDACs were demonstrated to be complex and context 
dependent. Many HDAC inhibitors have been developed 
but have not succeeded in the clinic, especially as single 
agents. Current clinical trials mostly focus on testing 
HDAC inhibitors in combination with standard-of-care 
therapies. The effects of HAT and HDAC inhibitors on 
breast cancer alone and in combination with standard-
of-care therapies should be more carefully investigated in 
future studies. Biomarkers may be needed to better iden-
tify breast cancer patients that might benefit from those 
inhibitors. The frequency of tumor-associated myeloid 
cells may potentially serve as biomarkers.
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