
R E S E A R C H Open Access

© The Author(s) 2025. Open Access  This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 
International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you 
give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the 
licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit  h t t p  : / /  c r e a  t i  
v e c  o m m  o n s .  o r  g / l  i c e  n s e s  / b  y - n c - n d / 4 . 0 /.

Kresovich et al. Breast Cancer Research           (2025) 27:46 
https://doi.org/10.1186/s13058-025-02004-x

Breast Cancer Research

*Correspondence:
Jacob K. Kresovich
jacob.kresovich@moffitt.org
1Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center & 
Research Institute, Tampa, FL 33612, USA
2Department of Breast Oncology, H. Lee Moffitt Cancer Center & Research 
Institute, Tampa, FL 33612, USA

3Epidemiology Branch, National Institute of Environmental Health 
Sciences, NIH, Research Triangle Park, Durham, NC 27709, USA
4Biostatistics and Computational Biology Branch, National Institute of 
Environmental Health Sciences, NIH, Research Triangle Park, Durham,  
NC 27709, USA
5Epigenetic and Stem Cell Biology Laboratory, National Institute of 
Environmental Health Sciences, NIH, Research Triangle Park, Durham,  
NC 27709, USA

Abstract
Background Blood DNA methylation (DNAm) profiles have been used to show that changes in circulating leukocyte 
composition occur during breast cancer development, suggesting that peripheral immune system alterations are 
markers of breast cancer risk. Blood DNAm profiles have recently been used to predict plasma protein concentrations 
(“Protein EpiScores”), but their associations with breast cancer risk have not been examined in detail.

Methods Whole blood DNAm profiles were obtained for a case-cohort sample of participants in the Sister Study and 
used to calculate 109 Protein EpiScores. Of the 4,479 women included, 2,151 (48%) were diagnosed with breast cancer 
within 15 years of their baseline blood draw (median time to diagnosis: 8.6 years; 1,673 invasive cancer and 478 ductal 
carcinomas in situ). Protein EpiScores associations with breast cancer incidence were estimated using weighted Cox 
regression models, overall and stratified by time and participant characteristics.

Results Protein EpiScores for RARRES2, IGFBP4, and CCL21 were positively associated with invasive breast cancer 
risk (hazard ratios from 1.17 to 1.24), while those for F7, SELL, CXCL9, CD48, and IL19 were inversely associated 
(hazard ratios from 0.82 to 0.86) (all FDR < 0.10). Eight immune response-related Protein EpiScores (CXCL9, CD48, 
FCGR3B, CXCL11, CCL21, CRTAM, VCAM1, GZMA) were associated with invasive cancers diagnosed within five years of 
enrollment. Protein EpiScore associations were consistently stronger for estrogen receptor-negative tumors.

Conclusions Several Protein EpiScores, including many related to immune response, were associated with 
breast cancer risk, highlighting novel changes to the peripheral immune system that occur during breast cancer 
development.
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Introduction
Blood DNA methylation (DNAm) at individual cyto-
sine-phosphate-guanine (CpG) sites and combinations 
of CpGs, used as DNAm-based predictors of biological 
age or leukocyte composition, have been investigated as 
markers of breast cancer risk [1–11] and may improve 
breast cancer risk prediction [12].

DNAm-based predictors of individual proteins (e.g., 
C-reactive Protein) and physiological traits (e.g., smok-
ing status) may have better predictive performance for 
disease incidence than direct measurements [13–21]. 
For example, DNAm-based predictors of smoking his-
tory outperform self-reported information in predicting 
lung cancer incidence and death [19, 20]. Paired plasma 
proteomic and leukocyte DNAm data from thousands of 
individuals have recently been used to derive a library of 
DNAm-based predictors of plasma proteins, called “Pro-
tein EpiScores” [22]. Protein EpiScores were developed 
using elastic net regularization to identify sets of CpGs 
throughout the genome where DNAm levels correlated 
with rank-based, inverse normalized, plasma protein 
concentrations, adjusted for age, sex, and known protein 
quantitative loci (pQTL) [23–25]. The number of CpGs 
used in any individual Protein EpiScore ranges from one 

to 395 (mean 96 CpGs), with some CpGs appearing in 
multiple scores (e.g., cg05574921 from AHRR) [22]. Pro-
tein EpiScores were considered validated if, in external 
testing datasets, their Pearson correlation coefficient with 
their directly measured protein was > 0.10. In total, 109 
Protein EpiScores met this threshold, explaining between 
1% and 58% of the variance in their corresponding pro-
teins [22]. In initial studies, Protein EpiScores were found 
to be associated with the risk of lung cancer [22], colorec-
tal cancer [22], cognitive decline [26], cardiometabolic 
conditions [22], and cardiovascular disease [22, 27].

Protein EpiScores are an emerging class of DNAm-
based metrics that may help quantify previously unmea-
sured aspects of breast cancer risk and provide insights 
into breast cancer development. In this study, we used 
existing whole blood DNAm data from a racially diverse 
case-cohort sample of 4,479 women enrolled in the Sister 
Study to examine the relationship between Protein EpiS-
cores and breast cancer incidence (Fig. 1).

Methods
Study population
The Sister Study enrolled a prospective cohort of 50,884 
women from the United States, who were aged 35 to 74, 

Fig. 1 Schematic of study design. Whole blood samples were collected from Sister Study participants at enrollment when all were breast cancer-free 
and assayed for genome-wide DNA methylation (DNAm) profiles using either the HumanMethylation450 or MethylationEPIC BeadChips. DNAm data 
were used to calculate circulating concentrations of 109 plasma proteins (“Protein EpiScores”) using a pre-identified set of CpGs. Breast cancer incidence 
associations with Protein EpiScores were estimated using weighted Cox regression models overall and stratified by time and participant characteristics
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between July 2003 and March 2009 and was designed to 
identify novel environmental and biological factors asso-
ciated with breast cancer incidence and survival [28]. By 
design, enrollment was restricted to women who were 
breast cancer-free, but had a first-degree family history of 
breast cancer [29]. Upon enrollment, participants com-
pleted a detailed computer-assisted telephone interview 
to provide information on demographics, lifestyle, and 
health. During an in-person home visit, trained medi-
cal examiners collected body measurements and whole 
blood samples following standardized procedures. Par-
ticipants are recontacted annually to self-report major 
changes in health, with response rates over 85%. Every 
three years, a more comprehensive questionnaire gathers 
updates on lifestyle, environmental exposure, and health. 
Written informed consent from all participants was col-
lected at the home visit, and the study is overseen by the 
Institutional Review Board of the National Institutes of 
Health. Research activities were performed in accordance 
with the Declaration of Helsinki. More information and 
procedures for accessing Sister Study data can be found 
at:  h t t p  s : /  / s i s  t e  r s t  u d y  . n i e  h s  . n i  h . g  o v / E  n g  l i s h / c o l l - d a t a . h t 
m.

Whole blood DNA methylation assessment and quality 
control
Two case-cohort samples of women were selected for 
DNAm profiling in this study. In 2014, blood DNA 
samples from 2,878 self-identified non-Hispanic White 
women were assayed using the Infinium HumanMeth-
ylation450 BeadChip, including 1,633 women diag-
nosed with breast cancer during study follow-up. In 
2019, blood DNA samples from 2,166 self-identified 
Black (Hispanic or non-Hispanic, n = 736) and non-
Hispanic White women (n = 1,430) were assayed using 
the Infinium MethylationEPIC BeadChip, including 999 
women (Black, n = 265; White, n = 734) diagnosed with 
breast cancer after study enrollment [30]. This second 
case-cohort sample was intentionally enriched for Black 
women and those diagnosed with estrogen receptor (ER) 
negative breast cancer. 541 women had DNAm profiled 
on both arrays; for these women, only DNAm data from 
the HumanMethylation450 BeadChip were used for 
analysis.

Genomic DNA was extracted from whole blood ali-
quots using an automated system (AutoPure, Gentra Sys-
tems) in the NIEHS Molecular Genetics Core Facility or 
using DNAQuik at BioServe Biotechnologies LTD (Belts-
ville, MD). Extracted DNA was bisulfite-converted using 
the EZ DNA Methylation Kit (Zymo Research, Orange 
County, CA). Samples were tested for complete bisulfite 
conversion, and converted DNA was analyzed using Illu-
mina’s Infinium BeadChip protocols with high-through-
put robotics to minimize batch effects. Methylation 

analysis was conducted at the National Institutes of 
Health Center for Inherited Disease Research (Baltimore, 
MD) for the 2014 case-cohort and at the National Cancer 
Institute (Rockville, MD) for the 2019 case-cohort.

DNAm data was preprocessed using the ENmix soft-
ware pipeline, which included background correc-
tion, dye-bias correction, inter-array normalization, 
and probe-type bias correlation [31–33]. Samples were 
excluded if they did not meet quality control measures, 
including bisulfate intensity < 5,000, more than 5% of 
probes with low-quality methylation values (detec-
tion P > 0.000001, < 3 beads, or values outside 3 times 
the interquartile range), or if they were outliers for their 
methylation beta value distributions. In total, 4,483 sam-
ples passed quality control. Four participants were miss-
ing age at end of follow-up, resulting in a DNAm analytic 
sample of 4,479 participants (Supplemental Fig. 1).

Protein EpiScore derivation and calculation in the Sister 
Study
Blood DNAm data were used to calculate circulating lev-
els of 109 Protein EpiScores using the ‘methscore’ func-
tion of ENmix [34]. Additional details on the Protein 
EpiScore development, including component CpGs (and 
weights) and generalized functions of the target proteins, 
can be found in the original report [22]. The target pro-
teins were classified into 39 unique groups, with some 
proteins assigned to multiple groups. The most common 
functions were immune response (49 proteins, 33%), 
metabolic (11 proteins, 7%), cell adhesion (11 proteins, 
7%), growth factors (7 proteins, 5%) and vascular (6 pro-
teins, 4%).

Breast cancer incidence and characteristics
Incident breast cancers and dates of diagnosis of Sis-
ter Study participants are self-reported. Women who 
report a breast cancer diagnosis are asked to provide a 
personal copy of their pathology report and are re-con-
tacted six months later to obtain permission to contact 
their healthcare providers for medical records. Women 
self-report information on tumor characteristics, which 
included invasiveness (invasive vs. ductal carcinoma in 
situ [DCIS]) and ER status. Medical record and pathology 
reports, when available, are abstracted for information 
on tumor characteristics and treatments. Because agree-
ment between self-reported and abstracted information 
is high (e.g., positive predictive values > 99% for invasive-
ness and ER positivity) [35], self-reported information is 
used when medical records are not available.

Statistical analysis
Because the study population comprised two case-
cohort samples, all models were weighted based on the 
participants’ inverse probability of selection for DNAm 

https://sisterstudy.niehs.nih.gov/English/coll-data.htm
https://sisterstudy.niehs.nih.gov/English/coll-data.htm
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profiling. As a result, the association estimates reported 
here are generalizable to the full sample of Black and 
non-Hispanic White women in the Sister Study [36]. 
Sample characteristics are described using weighted 
means and standard deviations (SD) or weighted propor-
tions overall and stratified by breast cancer status.

Breast cancer risk associations with the Protein EpiS-
cores, per 1-SD increase, were estimated using case-
cohort Cox regression models with robust standard 
errors and reported as hazard ratios (HRs) with 95% 
confidence intervals (CIs) and 2-sided P-values [36]. In 
all models, chronological age was used as the primary 
timescale [37] and left truncation was determined by age 
at blood draw. Follow-up ended at age of the breast can-
cer event, end of study follow-up (September 30, 2019), 
loss-to-follow-up, or death. Associations were exam-
ined for invasive breast cancer, where a DCIS diagnosis 
was treated as a censoring event, and for all breast can-
cer events combined (DCIS and invasive). To exclude the 
influence of occult breast cancer, associations were exam-
ined excluding the first two years of follow-up. Additional 
analyses examined Protein EpiScore associations with 
short-term breast cancer risk by estimating associations 
for breast cancers diagnosed within five years of the base-
line blood draw.

Primary Protein EpiScore associations were estimated 
in models adjusted for methylation platform (Human-
Methylation450, MethylationEPIC), age (years), and 
self-reported race (White, Black). Sensitivity analyses 
were conducted by additionally adjusting for breast can-
cer risk factors (smoking history, physical activity, body 
mass index, menopausal status, and an interaction term 
between body mass index and menopausal status) and 
leukocyte proportions (granulocytes, CD8 + T, CD4 + T, 
B cells, natural killers, monocytes), as estimated by the 
top-performing deconvolution algorithm [38]. Because 
leukocyte proportions sum to one, monocyte propor-
tions were excluded from the models to avoid overfitting. 
Effect modification was examined by self-reported race, 
and menopausal status, and examiner-measured body 
mass index at baseline.

Joint Cox regression models were performed to inves-
tigate Protein EpiScore associations with invasive breast 
cancer risk, stratified by ER status (positive, negative). 
Women were censored if they were diagnosed with the 
alternative subtype of interest, had missing ER informa-
tion, or were diagnosed with DCIS. To test for statistical 
interaction, the joint model was parameterized to allow 
for direct comparison of subtype-specific associations 
using a Wald test [39]. In the primary analyses of breast 
cancer risk, statistical significance was determined using 
a Benjamini-Hochberg False Discovery Rate (FDR) < 0.10 
[40]. To explore potential effect modification, signifi-
cant statistical interaction was defined at FDR < 0.15. All 

analyses were performed using SAS (version 9.4, Cary, 
NC) and R (version 4.1.0, R Foundation for Statistical 
Computing, Vienna, Austria).

Results
Sample population
A total of 4,479 women were followed for up to 15 years 
(median follow-up, 8.6 years). The participants had 
a weighted mean age of 56 years at enrollment. Most 
were non-Hispanic White (84%), had at least some col-
lege education (85%), and were postmenopausal (69%) 
(Table  1). Of the 2,500 women randomly selected into 
the case-cohort (“random subcohort”), 174 (7%) were 
diagnosed with breast cancer after study enrollment. 
An additional 1,977 women were sampled because they 
were diagnosed with breast cancer after study enrollment 
(“case sample”). Of the 2,151 women diagnosed with inci-
dent breast cancer, 1,673 were diagnosed with invasive 
breast cancer (1,483 non-Hispanic White, 190 Black) and 
478 were diagnosed with DCIS (409 non-Hispanic White, 
69 Black). Among the invasive breast cancer cases, 1,145 
were ER positive (1,040 non-Hispanic White, 105 Black) 
and 205 were ER negative (167 non-Hispanic White, 38 
Black) (Supplemental Fig.  1). Compared to women who 
remained breast cancer-free, those with breast can-
cer were slightly older (57 years vs. 56 years), reported 
greater alcohol use at baseline (4.5 vs. 4.1 drinks/week), 
were more likely to be non-Hispanic White (88% vs. 
80%), and be postmenopausal (72% vs. 66%) (Table 1).

Protein EpiScore associations with breast cancer incidence
In weighted Cox regression models adjusted for age, 
race, and DNAm platform, eight of the 109 Protein EpiS-
cores were significantly associated with the incidence 
of invasive breast cancer (Fig. 2). The strongest associa-
tions were observed for F7 and RARRES2 EpiScores: F7 
was inversely associated with invasive breast cancer 
(HR = 0.82, 95% CI: 0.74, 0.91, P = 3.0 × 10− 4, FDR = 0.03), 
while RARRES2 was positively associated (HR: 1.24, 95% 
CI: 1.10, 1.40, P = 6.0 × 10− 4, FDR = 0.03). Among the eight 
Protein EpiScores associated with invasive breast cancer 
risk, five are related to immune response, with four of 
these (SELL, CXCL9, CD48, and IL19) showing inverse 
associations. Pearson correlation coefficients between the 
eight Protein EpiScores ranged from − 0.40 (RARRES2 
and IL19) to 0.85 (CD48 and CXCL9) (Supplemental 
Fig. 2). In models adjusted for breast cancer risk factors, 
although HRs for RARRES2 and CCL21 were slightly 
attenuated, the HRs for CXCL9, CD48, F7, IGFBP4, 
SELL, and IL19 were essentially unchanged; despite the 
similar strengths of associations, no associations reached 
statistical significance (all FDR > 0.10, Supplemental Table 
1). In models adjusted for leukocyte composition, asso-
ciations with RARRES2, F7, SELL, IGFBP4, CCL21, and 
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CXCL9 remained statistically significant (all FDR < 0.10) 
(Supplemental Table 2). Protein EpiScore associations 
for IL19 and CD48 were also similar, but associations did 
not reach statistical significance (FDR = 0.11 for both). 
In a combined analysis of DCIS and invasive breast can-
cers, Protein EpiScore associations were attenuated com-
pared to those for invasive breast cancer alone, and none 
reached statistical significance (Supplemental Table 3).

After excluding the first two years of follow-up, Pro-
tein EpiScores for F7, RARRES2, and IGFBP4 remained 
statistically significantly associated with the incidence 
of invasive breast cancer at FDR < 0.10 (Supplemental 
Fig.  2). The other five Protein EpiScores showed similar 
strengths of association but were not statistically sig-
nificant. In an analysis of invasive breast cancer events 
occurring within the first five years of follow-up, IGFBP4, 
CXCL9, CD48, and CCL21 were significantly associated 
(Supplemental Fig.  3). Statistically significant associa-
tions were also observed for FCGR3B, CXCL11, CRTAM, 
VCAM1, LGALS3BP, SMPD1, and GZMA. Notably, 
eight of the eleven Protein EpiScores associated with 
invasive breast cancer incidence occurring in the first 
five years of follow-up are related to immune response 
(CXCL9, CD48, FCGR3B, CXCL11, CCL21, CRTAM, 

VCAM1, and GZMA), with seven of these showing 
inverse associations.

Protein EpiScore associations stratified by participant 
characteristics
In analyses stratified by participant characteristics, sig-
nificant interactions by race were observed for six Pro-
tein EpiScores: HGF, LYZ, CLEC11A, VEGFA, F7, and 
LFT. The inverse association between the F7 Protein 
EpiScore and invasive breast cancer was significant only 
among non-Hispanic White women (White, HR: 0.78, 
95% CI: 0.66, 0.87, P = 1.0 × 10− 4; Black, HR: 0.97, 95% CI: 
0.86, 1.10, P = 0.69; Interaction FDR = 0.12) (Supplemen-
tal Table 4). Although the Protein EpiScores for HGF, 
LYZ, CLEC11A, VEGFA, and LFT were not significantly 
associated with invasive breast cancer risk in the pri-
mary analysis, they were all positively associated in Black 
women and inversely associated in White women (all 
interaction FDR < 0.15). Only two of these Protein EpiS-
cores are related to immune response (LYZ and LTF). 
No significant invasive breast cancer interactions were 
observed between any Protein EpiScores and body mass 
index or menopause status (Supplemental Tables 5 and 
6).

Table 1 Weighted characteristics of sister study subsample with DNAm data (N = 4,479)
Characteristic Overall

N = 4,479
Breast cancer-free
N = 2,328

Breast Cancer
N = 2,151

Age, mean yrs. 55.7 55.5 57.4
Physical activity, mean METs/week 51.1 51.6 47.3
Smoking history, mean pack-years 2.4 2.3 3.2
Alcohol use, mean drinks/week 4.2 4.1 4.5
Parity, mean live births 1.9 1.9 1.9
Body mass index, mean kg/m2 27.8 27.7 28.2
Self-reported Race
Non-Hispanic White 84% 80% 88%
Black (Hispanic or non-Hispanic) 16% 20% 12%
Educational Attainment
High school or less 14% 15% 14%
Some college 33% 34% 32%
College graduate or more 52% 51% 54%
Smoking status
Never 54% 56% 53%
Former 37% 35% 40%
Current 8% 9% 7%
Menopausal status
Premenopausal 31% 34% 28%
Postmenopausal 69% 66% 72%
Tumor invasiveness
Invasive 78%
DCIS 22%
Invasive tumor ER status
Positive 69%
Negative 12%
Missing 19%
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Protein EpiScore associations by tumor ER status
In the analysis stratified by ER status, 40 Protein EpiS-
cores showed significant interactions across tumor sub-
types (interaction FDR < 0.15; Supplemental Table 7). 
Among these, five Protein EpiScores—CXCL9, IL19, 
CD48, CCL21, and F7—were significantly associated with 
invasive breast cancer risk in the primary analysis, includ-
ing four related to immune response. Notably, nearly 
all of the Protein EpiScores, including all five identified 
in the primary analysis, displayed stronger associations 
in women diagnosed with ER-negative tumors (Fig.  3). 
The most pronounced heterogeneity for Protein EpiS-
cores identified in the primary analysis were for CXCL9 
(ER-positive, HR: 0.87, 95% CI: 0.76, 0.99, P = 0.04; ER-
negative, HR: 0.44, 95% CI: 0.34, 0.58, P = 3.2 × 10− 9; 
Interaction FDR = 0.0003) and IL19 (ER-positive, HR: 
0.93, 95% CI: 0.83, 1.04, P = 0.21; ER-negative, HR: 0.56, 
95% CI: 0.43, 0.73, P = 1.6 × 10− 5; Interaction FDR = 0.004) 
(Fig. 4, Supplemental Table 7).

Discussion
In this prospective case-cohort study of 4,479 women, 
including 2,151 who were diagnosed with breast can-
cer after the enrollment blood draw, we identified eight 
Protein EpiScores significantly associated with invasive 

breast cancer risk. Five of these were designed to pre-
dict proteins involved in immune response, with four 
displaying inverse associations. In the analysis of short-
term invasive breast cancer risk, eight Protein EpiScores 
related to immune response were significantly associated, 
with seven displaying inverse associations. There was 
considerable association heterogeneity by breast cancer 
subtype, with stronger associations for women diagnosed 
with ER-negative tumors. These findings highlight novel 
changes in peripheral immunity that may occur during 
breast cancer development.

Various Protein EpiScores have been reported as risk 
markers for cancer [22], cardiometabolic conditions 
[22], cognitive decline [26], and cardiovascular disease 
[22, 27]. However, interpreting Protein EpiScore asso-
ciations is complex. Protein EpiScores are only modestly 
correlated with their corresponding protein targets, with 
Pearson correlations ranging from 0.10 (STC1) to 0.73 
(MST1) [22]. These imperfect correlations stem partly 
from the decision to train the Protein EpiScore mod-
els on plasma protein concentrations after adjustment 
for age, sex, and pQTLs—factors that strongly influence 
circulating protein levels [23–25, 41, 42]. Additionally, 
Protein EpiScores were developed using genome-wide 
DNAm data from leukocytes, even though only some of 

Fig. 2 Protein EpiScore associations with invasive breast cancer incidence. Hazard Ratios and 95% confidence intervals from weighted Cox regression 
models displaying associations for the Protein EpiScores significantly associated with invasive breast cancer incidence (FDR < 0.10). Models treat age 
as the time-scale and are therefore adjusted for age. The models additionally include DNAm platform (HumanMethylation450, MethylationEPIC) and 
self-reported race (non-Hispanic White, Black) as covariates. Bolded Protein EpiScores represent those that are designed to predict plasma proteins with 
‘immune response’ functions
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the targeted proteins are principally produced by leuko-
cytes. Consequently, the CpGs used in the Protein EpiS-
cores do not necessarily map to the genes encoding the 
target proteins; for example, only one of the 26 CpGs in 
the F7 Protein EpiScore is located in the F7 gene [22]. 
Compared to plasma protein levels, which are known to 
vary over short periods [43, 44], leukocyte DNAm pro-
files are relatively more stable over time [45]. Protein 
EpiScores may, therefore, represent a time-integrated 
assessment of leukocyte transcriptional responses to 
different plasma protein concentrations rather than a 
direct measurement of those proteins. In contrast, Pro-
tein EpiScores for immune response proteins may reflect 
the long-term transcriptional state of leukocytes. Protein 
EpiScores are known to replicate certain well-established 
protein-disease associations, suggesting that they may 
complement direct protein measurements in studying 
disease development [46–50].

The association between Protein EpiScores and breast 
cancer risk was previously examined in the Generation 
Scotland Cohort, which included only 131 breast can-
cer events and found no statistically significant associa-
tions [22]. Our study, which includes more than 10 times 
as many invasive breast cancer cases, identified signifi-
cant associations with eight Protein EpiScores in models 

adjusted for age, race, and methylation platform. Spe-
cifically, we observed positive associations with Protein 
EpiScores for IGFBP4 and RARRES2 (chemerin), both of 
which have been reported to be higher in treatment-naïve 
invasive breast cancer patients than cancer-free women 
[51, 52]. The other six Protein EpiScores we identified are 
for proteins not yet investigated in epidemiologic studies 
of breast cancer. Whether direct measurements of these 
other proteins are associated with breast cancer risk will 
need to be examined in future studies.

Protein EpiScores may also provide insights into breast 
cancer development. In this study, five of the identified 
Protein EpiScores are related to immune response; four 
of which may enhance the immune system’s ability to 
detect and destroy malignant cells. Specifically, we found 
inverse associations between breast cancer and Protein 
EpiScores for CD48, SELL (L-selectin), CXCL9, and IL19. 
CD48 and SELL are adhesion molecules that may pro-
tect against breast cancer by enhancing leukocytes’ abil-
ity to bind to malignant cells [53, 54]. CXCL9 and IL19 
are signaling molecules that regulate anti-tumor immune 
cell subsets, such as CD4 + helper and CD8 + cytotoxic 
T-cells [55, 56], offering additional protection against 
breast cancer. Conversely, we observed a positive associa-
tion between breast cancer risk and the Protein EpiScore 

Fig. 3 Protein EpiScore associations with invasive breast cancer incidence, stratified by tumor ER status. Volcano plot depicting the log(hazard ratios) 
and -log10(P-values) for all 109 Protein EpiScores and invasive breast cancer incidence, stratified by tumor ER status. Protein EpiScore names displayed for 
those significantly associated with invasive breast cancer incidence at P < 0.001. Results from weighted Cox regression models treating age as the time 
scale and adjusted for DNAm platform and race
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for CCL21, a signaling molecule that may reduce the 
immune system’s response to malignant cells by activat-
ing immunosuppressive leukocyte subsets (e.g., T regula-
tory cells) [57]. Notably, in the set of Protein EpiScores 
associated with short-term breast cancer risk, a majority 
were related to immune response and displayed inverse 
associations. There was also considerable variation in 
Protein EpiScore associations by tumor subtype, with 
Protein EpiScores consistently showing stronger associa-
tions with ER-negative breast cancers. This could reflect 
the higher immunogenicity of ER-negative breast can-
cers, which tend to elicit stronger immune responses 
[58].

This study is not without limitations. First, we lacked 
direct measurements of plasma proteins in the Sister 
Study, so we could not compare association estimates 
between Protein EpiScores and directly measured pro-
teins. Second, although we observed statistical hetero-
geneity by ER status, our sample size was insufficient to 
examine more finely stratified associations, such as those 
among women diagnosed with triple-negative breast can-
cer. Third, Protein EpiScores were derived in populations 
of European ancestry and their translation to individu-
als with different ancestries has not yet been examined 
in detail. Lastly, because the Sister Study enrolled only 

women with a first-degree family history of breast cancer, 
the findings may not be generalizable to women without 
a family history. Despite these limitations, this study ben-
efits from a large study population, the prospective case-
cohort study design, and the exploration of a novel class 
of DNAm-based metrics.

In summary, we find that Protein EpiScores are signifi-
cantly associated with invasive breast cancer risk, with 
most related to immune response. Interestingly, the asso-
ciations appeared stronger for short-term breast cancer 
risk and for women diagnosed with ER-negative breast 
cancer. This study represents the first large-scale investi-
gation of Protein EpiScores and breast cancer risk. Find-
ings can help prioritize protein targets for future research 
and offer insights into the leukocyte transcriptional pro-
grams related to breast cancer development.
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