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Abstract 

Background  The insulin-like growth factor (IGF) pathway is implicated in a naturally occurring process of tissue 
remodeling during which cells acquire stem cell-like characteristics. We examined associations of circulating IGF-1 
and IGF binding protein-3 (IGFBP-3) with expression of CD44, CD24, and ALDH1A1 stem cell markers in benign breast 
biopsies.

Methods  This study included 151 cancer-free women with incident biopsy-confirmed benign breast disease 
and blood samples within the Nurses’ Health Study II. The data on reproductive and other BCa risk factors were 
obtained from biennial questionnaires. Immunohistochemistry (IHC) was done on tissue microarrays. For each 
core, the IHC expression was assessed using QuPath, and expressed as % of cells that stain positively for a specific 
marker out of the total cell count. Generalized linear regression was used to examine the associations of plasma IGF-I 
and IGFBP-3 (continuous log-transformed and quartiles) with log-transformed expression of each marker (in epithe-
lium and stroma), adjusted for BCa risk factors.

Results  In multivariate analysis, continuous circulating IGF-1 and IGFBP-3 measures were not associated 
with the continuous expression of any of the markers in the epithelium or stroma. Women whose IGFBP-3 levels were 
in the top quartile appeared to have lower expression of stromal CD24 compared to those in the lowest quartile 
(β = − 0.38, 95% CI − 0.69, − 0.08, p-trend = 0.06).

Conclusions  Higher circulating IGFBP-3 levels were associated with lower stromal CD24 expression in benign breast 
tissue. Our findings provide indirect evidence of the inducing effect of IGF pathway on epithelial-to-mesenchymal 
transitions and stem cell activity in the breast.
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Background
Breast stem cells play a critical role in sustaining breast 
tissue architecture throughout the woman’s life [1, 2]. 
However, potentially limitless self-renewal capacity and 
high susceptibility to various endogenous and exog-
enous mutagenic insults increase the chances of their 
tumorigenic transformation [1, 3]. According to the 
stem cell hypothesis of breast carcinogenesis, breast 
cancer development might be directly related to the 
size and mitotic activity of the stem cell pool in the 
breast [4]. Further, in the breast, stem cells are the only 
cell subpopulation that can accumulate all the onco-
genic alterations [1].

Insulin-like growth factors (IGF) play an important 
role in the structure of breast lobules and lobular invo-
lution [5]. Epidemiologic and animal studies suggest an 
increase in breast cancer risk with elevated circulating 
IGF-1 and insulin-like growth factor-binding protein 
3 (IGFBP-3) which are also associated with a number 
of breast cancer risk factors, including birthweight, 
mammographic density, benign breast disease (BBD) 
as well as BBD to tumor progression [5–11]. IGF-1 sys-
tem plays an important role in breast carcinogenesis [9, 
12] by regulating the epithelial-to-mesenchymal transi-
tion (EMT, a natural process for tissue remodeling and 
wound healing), and stem cell-related processes across 
several tissues [13, 14]. An overlap between EMT and 
stem cell mechanisms is supported by the evidence 
that cells undergoing EMT acquire stem cell-like char-
acteristics including self-renewal, gain of specific gene 
expression patterns, and ability to initiate tumorigen-
esis [13, 15]. However, the relationship between circu-
lating IGF pathway markers and stem cells has never 
been investigated. To address this knowledge gap, we 
examined associations of IGF-1 and IGFBP-3 with 
well-characterized stem cell markers CD44, CD24, and 
ALDH1A1. There are no universal markers for breast 
cancer stem cells (and normal mammary stem cells), 
but CD44, CD24, and ALDH1A1 stem cell markers 
remain the most accepted markers that have been vali-
dated and linked to younger age at diagnosis, higher 
odds of unfavorable tumor characteristics, and poor 
prognosis and chemotherapy resistant breast cancer 
[16–24]. Accumulating reports show that breast cancer 
stem cells with co-stained CD44+/CD24− or CD44+/
CD24low and ALDH1+ or ALDH1high  are responsi-
ble for tumor initiation, progression, metastasis, and 
drug resistance [16–24]. In line with this evidence, we 
hypothesized that higher levels of IGF-1 and IGFBP-3 
would be positively associated with the expression of 
CD44 and ALDH1A1, and inversely associated with 
CD24 (consistent with associations of CD44high, 

ALDH1A1high, and CD24low with unfavorable tumor 
features).

Materials and methods
Study population
Our analysis included women with incident biopsy-
confirmed benign breast disease (BBD) in the Nurses’ 
Health Study II (NHSII) cohort. NHSII followed regis-
tered nurses in the United States who were 25–42 years 
old at enrollment. After administration of the initial 1989 
NHS II questionnaire, the information on breast cancer 
risk factors (body mass index [BMI], reproductive his-
tory, menopausal hormone therapy [MHT] use, and alco-
hol use) and any diagnoses of cancer or other diseases 
(including BBD) was updated through biennial question-
naires which were then confirmed via medical record 
review [25]. The initial questionnaire and all subsequent 
biennial questionnaires asked participants to report any 
diagnosis of BBD and to indicate whether it was con-
firmed by biopsy or aspiration. Details of this incident 
BBD study and the BBD assessment have been previ-
ously described [12, 26]. We obtained BBD pathology 
records and archived biopsy specimens for all BBD cases 
from their hospital pathology departments. Women were 
excluded if they had evidence of in  situ or invasive car-
cinoma or unknown lesion type at the time of benign 
breast biopsy.

Between 1996 and 1999, 29,611 NHSII participants 
who were 32–45 years old provided a blood sample [27, 
28]. In brief, premenopausal NHSII participants who 
were not using any hormones, were not pregnant, or have 
not breastfed in the previous 6 months, provided a 30-ml 
blood sample collected 7–9  days before the anticipated 
start of their next menstrual cycle (luteal blood draw). 
NHSII women who were ineligible to provide timed 
samples (i.e., perimenopausal, postmenopausal, had a 
simple hysterectomy, currently used any hormones, or 
declined to give timed samples) provided a single 30-ml 
blood sample (referred to as “untimed” samples, 22.5% 
of women in our final study sample). For both luteal 
and untimed samples, women shipped the blood to the 
Brigham and Women’s/Harvard Cohorts Biorepository 
laboratory, with an ice-pack, via overnight courier, where 
the samples were processed, separated into plasma, red 
blood cell, and white blood cell components, and ali-
quoted into labeled cryotubes. All samples have been 
stored in the vapor phase of continuously monitored liq-
uid nitrogen freezers (below − 130 °C) since collection.

In the current analysis, we included 151 women who 
had complete data on breast cancer factors, IGF meas-
ures, and staining results for stem cell markers. All 
women in our sample were diabetes-free at the time of 
the blood collection. The study protocol was approved 
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by the institutional review boards (IRB) of the Brigham 
and Women’s Hospital and Harvard T.H. Chan School 
of Public Health, and those of participating registries 
as required, and University of Florida IRB. Consent was 
obtained or implied by return of questionnaires.

Benign breast biopsy confirmation and BBD subtypes
Hematoxylin and eosin (H&E) breast tissue slides were 
retrieved for biopsy-confirmed BBD patients who gave 
permission to review their biopsy records. The slides 
were previously independently reviewed by one of three 
pathologists in a blinded fashion, i.e. the evaluating 
pathologists were blinded to type of BBD noted on the 
original diagnosis [29, 30]. Any slide identified as having 
either questionable atypia or atypia was jointly reviewed 
by two pathologists [29, 30]. Each benign breast biopsy 
was classified according to the categories of Page et  al.
[31] as non-proliferative, proliferative without atypia, or 
atypical hyperplasia (ductal or lobular hyperplasia) [12].

Tissue microarray (TMA) construction of BBD samples
After centralized review of H&E stained slides, we 
retrieved archived FFPE benign breast biopsy blocks for 
participants. H&E sections of the corresponding FFPE 
tissue blocks were re-reviewed by a single pathologist to 
identify areas of benign proliferative lesions and normal 
terminal duct-lobular units (TDLUs), and to identify the 
areas from which the cores for the TMAs would be taken. 
Normal TDLUs were regions of histologically normal tis-
sue that may or may not be adjacent to benign lesions 
(e.g., atypical ductal hyperplasia, usual ductal hyperpla-
sia) [12]. TMAs were constructed at the Dana Farber/
Harvard Cancer Center (DF/HCC) Tissue Microarray 
Core Facility by obtaining 0.6-mm cores from benign 
lesions and TDLUs. For each woman, up to 3 cores of 
normal TDLU were included in the TMA blocks. We 
previously evaluated our TMA construction methods 
and confirmed a high success rate (76%) of capturing 
normal TDLUs in these TMA blocks [32].

Immunohistochemistry (IHC) for stem cell markers
The expression of the stem cell markers was evalu-
ated by semi-automated IHC technique that allows 
the quantification of markers’ expression levels and 
localization of the target signal to specific cells/struc-
tures. For each of the three markers one 5-μm paraf-
fin section was cut from a single TMA block and then 
stained at the University of Florida Pathology Core 
Lab on DAKO AutostainerPlus according to the previ-
ously standardized protocol with commercial antibod-
ies (CD44 [DAKO] 1:25 dilution; CD24 [Invitrogen] 
1:200 dilution and ALDH1A1 [Abcam] 1:300 dilution) 
[33–35]. Briefly, slides were de-paraffinized with xylene 

and re-hydrated through decreasing concentrations 
of ethanol to water, including an intermediate step to 
quench endogenous peroxidase activity (3% hydrogen 
peroxide in methanol) and transferred to 1X TBS-T 
(Tris-buffered saline-Tween). For heat-induced anti-
gen retrieval, sections were heated in a steamer while 
submerged in Citra (Biogenex, Fremont, CA) or Tril-
ogy (Cell Marque, Rocklin, CA) for 30 min. Next, slides 
were (1) rinsed in 1XTBS-T and incubated with a uni-
versal protein blocker Sniper (Biocare Medical, Walnut 
Creek, CA) for 10 (for CD44 and ALDH1A1) or 15 min 
(for CD24); (2) rinsed in 1XTBS-T and co-incubated in 
primary antibody ALDH1A1, CD24, or CD44 for 1  h; 
and (3) rinsed in 1XTBS-T followed by application of 
conjugated secondary antibody (Mach 2 goat anti-
rabbit horse [or mouse] radish peroxidase-conjugated, 
Biocare Medical, Walnut Creek, CA) for 30 min. Detec-
tion of antibodies was achieved by incubating slides in 
3′3′ diaminobenzidine (Vector Laboratories Inc., Burl-
ingame, CA) for 4 min. Slides were counterstained with 
hematoxylin (Biocare Medical, Walnut Creek, CA) 1:10 
for 3  min and mounted with Cytoseal XYL (Richard-
Allen Scientific, Kalamazoo, MI). The laboratory imple-
mented standard quality control procedures.

Image analysis
Stained TMA sections were digitized at 40× using the 
PhenoImager HT (Akoya Biosciences, Marlborough, 
MA). QuPath v0.5.0 was used to quantify the immu-
noreactivity of the markers [36]. For each marker, we 
randomly selected 12 tissue cores of variable staining 
intensities on a TMA to train tissue segmentation into 
epithelium and stroma, and determine the minimum 
intensity to score a cell as immunoreactive [37]. We 
used random forest object classifier and the “positive cell 
detection” command to optimize cell parameters, inten-
sity thresholds for hematoxylin and cytoplasm (mean 
optical density), and used the default values for all other 
parameters.

We focused the current analysis on the expression of 
stem cell markers in normal TDLU cores for the follow-
ing reasons: (1) we specifically targeted normal TDLUs 
in construction of these TMAs and thus the number of 
women with benign lesion cores was smaller and would 
not allow to draw meaningful conclusions; (2) in our 
earlier reliability study, we observed higher heterogene-
ity within benign lesion cores as they were represented 
by various lesion types [33]; and (3) we were interested 
in the underlying changes in the breast tissue happen-
ing early in the process of breast carcinogenesis and 
thus normal TDLUs were more relevant to address our 
research questions.
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IGF‑1 and IGFBP‑3 laboratory assays
IGF-1 and IGFBP-3 levels were assayed in two batches 
for luteal and untimed samples in the NHSII by ELISA 
after acid extraction at the Department of Medicine 
and Oncology at McGill University, using reagents from 
Diagnostic Systems Laboratory (Webster, TX, USA). 
The mean coefficients of variation were 3.5 and 2.8% for 
IGF-1 and 1.6 and 3.7% for IGFBP-3 [28].

Covariate information
Information on breast cancer risk factors was obtained 
from the biennial questionnaires closest to the biopsy 
date. Women were considered to be postmenopausal 
if they reported: (1) no menstrual periods within the 
12  months before biopsy with natural menopause, (2) 
bilateral oophorectomy, or (3) hysterectomy with one or 
both ovaries retained, and were 54 years or older for ever 
smokers or 56 years or older for never smokers [38, 39].

Statistical analysis
To account for batch-to-batch variation, IGF-1 and 
IGFBP-3 levels were recalibrated to have a compara-
ble distribution to an average batch according to meth-
ods outlined by Rosner et  al. [40]. We used generalized 
linear regression to examine the associations of plasma 
concentrations of IGF-I and IGFBP-3 (continuous log-
transformed and batch-specific quartiles) with log-trans-
formed expression of each marker (in epithelium and 
stroma, measured as weighted [by the number of cells] 
average across available cores for a woman), adjusted 
for the following covariates: (1) Model 1: age (continu-
ous), BMI (continuous); (2) Model 2 (full): age (continu-
ous), BMI (continuous), a family history of breast cancer 
(yes/no), menopausal status (premenopausal, postmeno-
pausal, unknown menopausal status), age at menarche 
(< 12, 12, 13, > 13, unknown), combined parity/age at 
first birth (parous with first birth before age 25, parous 
with first birth at or after age 25, nulliparous, unknown), 
benign breast disease subtype (non-proliferative, prolif-
erative without atypia, proliferative with atypia), alcohol 
use (none, > 0 − < 5, ≥ 5  g/day), and NHS cohort (NHS, 
NHSII); and (3) Model 3 (reduced): age (continuous), 
BMI (continuous), menopausal status (premenopausal, 
postmenopausal, unknown menopausal status), com-
bined parity/age at first birth (parous with first birth 
before age 25, parous with first birth at or after age 25, 
nulliparous, unknown), and benign breast disease sub-
type (non-proliferative, proliferative without atypia, pro-
liferative with atypia). Due to the relatively small sample 
size and large number of covariates, we present Model 3 

as our final model. Median levels within respective cat-
egories of IGF-1 and IGFBP-3 were used for the test of 
trend. All the analyses were performed using SAS soft-
ware (version 9.4, SAS Institute, Cary, NC). All tests of 
statistical significance were 2-sided.

Results
In this study of 151 women, 3 (2.0%) had non-prolifera-
tive disease, 137 (90.7%) had proliferative disease without 
atypia, and 11 (7.28%) had atypical hyperplasia. The aver-
age age at biopsy was 42.9 years (range 34–61). Majority 
of the women were premenopausal (88.7%). Age-adjusted 
characteristics of women in the study by IGF-1 and 
IGFBP-3 levels are presented in Table 1.

Age and BMI-adjusted risk estimates (Model 1) are 
presented in Supplementary Table  1 and the results of 
the fully-adjusted model (Model 2) are presented in Sup-
plementary Table  2. In multivariate analysis (Table  2), 
circulating IGF-1 was not associated with the expression 
of any of the markers in epithelium or stroma (Table 2). 
Continuous measures of IGFBP-3 were not associated 
with the expression of CD44 or ALDH1A1 markers in 
epithelium or stroma. However, there was a sugges-
tion of an inverse association between IGFBP-3 quar-
tiles with stromal CD24 expression in normal TDLUs 
(β for 4th vs. 1st quartile = − 0.38, 95% CI − 0.69, − 0.08, 
p-trend = 0.06).

Discussion
In this study of 151 women, we only found significant 
inverse associations between circulating IGFBP-3 with 
stromal CD24 expression in benign breast tissues. IGF-1 
is expressed in many tissues and in the breast, predomi-
nantly in the stroma of normal and malignant tissue 
[41]. IGF-1 signaling pathway plays a critical role in both 
the EMT and stem cell-related processes in normal and 
cancerous tissues with numerous studies showing its 
involvement in self renewal, stem cell surface markers, 
migration, and invasion and tumor initiation in lung, 
prostate, liver, and breast cancers [13]. Previous pooled 
analyses reported positive associations of circulating 
IGF-1 and IGFBP-3 with breast cancer [42]. Stem cell 
markers CD44, CD24, and ALDH1A1 in breast tumors 
were linked to younger age at diagnosis, unfavorable 
tumor characteristics, (i.e. grade, stage, and triple-nega-
tive status), metastatic spread, poor prognosis and chem-
otherapy resistance [16–24], with positive associations 
for CD44 and ALDH1A1 and inverse associations for 
CD24. Our current study observed a suggestive inverse 
association between circulating IGFBP-3 and benign 
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breast stromal CD24 expression, providing indirect evi-
dence of the effect of IGF on EMT and stem cell activity 
in normal TDLUs.

To our knowledge, this is the first study to date explor-
ing the associations of IGF-1 and IGFBP-3 with breast 
stem cell markers. The analysis used data from NHSII, an 
established cohort with more than 30 years of follow-up, 
confirmed benign breast disease status, and comprehen-
sive information on breast cancer risk factors. Our study 
has a few limitations. First, we had only a single IGF-1 
and IGFBP-3 measurement. However, previous work in 
this cohort shows high correlations of these measures 
over the 3-year period among premenopausal women 
(interclass correlations 0.70 for IGF-1 and 0.74 for 
IGFBP-3), suggesting that a single measurement of IGF-1 
and IGFBP-3 reliably represents their levels over a long 
period of time [28]. Next, we recognize that biopsy sam-
ples come from a specific area of the breast. Our previous 
work shows that this sampling method is able to provide 
strong evidence for a priori hypotheses and meaningful 
findings for breast tissue involution [5], identification of 
markers associated with breast cancer risk [12, 43, 44], 
and associations with known breast cancer risk factors, 

suggesting that this limitation has minimal impact on 
research findings [45]. Further, previous studies suggest 
that CD44( +)CD24(-/low) and ALDH1(high) expres-
sion could be used to characterize two largely non-over-
lapping populations of breast cancer stem cells which 
have epithelial-like and mesenchymal-like phenotypes, 
respectively [46–48]. We stained each marker separately. 
Hence, we were unable to determine the co-localization 
of these stem cell markers or assess the combination of 
these markers’ expression on a cell-by-cell basis. Finally, 
we were unable to make any adjustments for circulating 
estrogens to account for interplay between estrogens and 
IGF pathway and their potential influence on stem cells 
as these measurements were not available in this study 
sample.

Conclusions
We found a suggestive association of higher circulat-
ing IGFBP-3 levels with lower stromal CD24 expression 
in benign breast tissue. As stem cells are characterized 
by higher CD44/lower CD24 expression, our findings 
support the hypothesis that the activation of the IGF 

Table 1  Age-adjusted characteristics of Nurses’ Health Study II participants, by IGF-1 levels at time of biopsy

a Value is not age adjusted

Characteristic Below median 
IGF-1
n = 76

Above median IGF-1
n = 75

Below median 
IGFBP-3
n = 75

Above 
median 
IGFBP-3
n = 76

Mean (SD)

 Age (years)a 44.62 (5.09) 41.25 (4.59) 43.92 (5.44) 41.99 (4.61)

 Age at menarche (years) 12.51 (1.43) 12.79 (1.30) 12.72 (1.56) 12.76 (1.42)

 Body Mass Index (kg/m2) 26.51 (6.65) 24.47 (4.00) 25.22 (5.32) 25.55 (5.48)

 Alcohol, g/day 2.67 (4.32) 2.92 (5.06) 3.28 (5.84) 2.42 (3.74)

Percentages

 Parity/age at first birth

  Nulliparous 20 15 22 14

  Parous, age < 25 years 31 27 27 28

  Parous, age ≥ 25 years 47 56 49 57

 Family history of breast cancer 5 5 4 9

 Benign breast disease

  Non-proliferative 4 0 3 1

  Proliferative without atypia 87 94 87 95

  Proliferative with atypia 9 6 10 4

 Menopausal status/hormone use

  Premenopausal 84 93 86 94

  Postmenopausal 14 3 11 2
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pathway induces stem cell activity in the breast. Future 
studies are needed to confirm our findings.
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