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Abstract 

Background Treatment with HER2-targeted therapies is recommended for HER2-positive breast cancer patients 
with HER2 gene amplification or protein overexpression. Interestingly, recent clinical trials of novel HER2-targeted 
therapies demonstrated promising efficacy in HER2-low breast cancers, raising the prospect of including a HER2-low 
category (immunohistochemistry, IHC) score of 1 + or 2 + with non-amplified in-situ hybridization for HER2-targeted 
treatments, which necessitated the accurate detection and evaluation of HER2 expression in tumors. Traditionally, 
HER2 protein levels are routinely assessed by IHC in clinical practice, which not only requires significant time con-
sumption and financial investment but is also technically challenging for many basic hospitals in developing coun-
tries. Therefore, directly predicting HER2 expression by hematoxylin-eosin (HE) staining should be of significant clinical 
values, and machine learning may be a potent technology to achieve this goal.

Methods In this study, we developed an artificial intelligence (AI) classification model using whole slide image of HE-
stained slides to automatically assess HER2 status.

Results A publicly available TCGA-BRCA dataset and an in-house USTC-BC dataset were applied to evaluate our AI 
model and the state-of-the-art method SlideGraph + in terms of accuracy (ACC), the area under the receiver operat-
ing characteristic curve (AUC), and F1 score. Overall, our AI model achieved the superior performance in HER2 scoring 
in both datasets with AUC of 0.795 ± 0.028 and 0.688 ± 0.008 on the USCT-BC and TCGA-BRCA datasets, respectively. 
In addition, we visualized the results generated from our AI model by attention heatmaps, which proved that our AI 
model had strong interpretability.

Conclusion Our AI model is able to directly predict HER2 expression through HE images with strong interpretabil-
ity, and has a better ACC particularly in HER2-low breast cancers, which provides a method for AI evaluation of HER2 
status and helps to perform HER2 evaluation economically and efficiently. It has the potential to assist pathologists 
to improve diagnosis and assess biomarkers for companion diagnostics.
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Introduction
Breast cancer (BC) is the most commonly diagnosed 
cancer in women worldwide and the leading cause of 
cancer deaths globally in the year of 2022 [1]. In China, 
BC became the most frequent cancer type in women, and 
Chinese patients accounted for approximately 18% death 
cases of BC in the world [2]. In the foreseeable future, 
BC will remain a critical health challenge and a main risk 
factor for death [3].

Human epidermal growth factor receptor 2 (HER2) 
is a well-known negative prognostic factor, a predictive 
biomarker, and a therapeutic target in several kinds 
of cancers, leading to the development of multiple 
targeted therapies utilizing the monoclonal antibody 
trastuzumab as well as other anti-HER2 compounds 
[4, 5]. The HER2 IHC scoring is a semi-quantitative 
method that applies four grades, HER2 0, 1 +, 2 +, and 
3 +, to denote the expression levels of HER2 protein on 
cell surface in BC tissues according to the American 
Society of Clinical Oncology and the American Society 
of Pathologists (ASCO/CAP) 2018 guidelines. HER2-
positive BC is defined as IHC HER2 3 + or IHC HER2 
2 + in combination with HER2 gene amplification 
detected by ISH [6]. Traditional viewpoint believed that 
only patients with HER2-positive would benefit from 
HER2-targeted drugs, such as trastuzumab, pertuzumab, 
and most recently, tucatinib and trastuzumab deruxtecan 
(T-DXd), resulting in improved survival [7]. Recently, 
there has been a change in the interpretation of HER2 
status (negative/positive), which separates the HER2-low 
expression cases from the HER2-negative category [8]. 
Such change has been supported by the  latest researche 
that observed the anti-tumour effects of the conjugated 
antibody T-DXd in the HER2-low subgroup of metastatic 
or local unresectable BC, represented by the extension of 
both progression-free and overall survivals [9, 10].

For pathological diagnosis, studies of intra- and inter-
observer variability have found a good concordance 
between different observers for the distinguishment 
of positive and negative HER2 expression [11, 12]. 
Now that the clinical importance of the HER2-low 
subgroup has been recognized, precise identification of 
this subgroup becomes crucial. However, although the 
ASCO/CAP guidelines have defined the IHC criteria for 
HER2 status in BC, identifying HER2-low expression is 
often indecisive with low reproducibility [8]. Not like 
determination of HER2-negative and HER2-positive 
status, distinguishing the HER2  0 and HER2-low, 
especially HER2 1 + subgroups is quite difficult and of 
low concordance [11, 12]. The HER2 signals might be 
affected by many pre-analytical and analytical issues 

such as formalin fixation, staining artifacts, technical 
diversity, and biological heterogeneity, which will give 
rise to both false positive and false negative results in the 
identification of HER2-low expression [13].

Even for the most experienced and conscientious 
pathologists, methodologies in addition to IHC would 
be of great help in determining the HER2 status of the 
HER2-low group of BC patients. Fortunately, machine 
learning-based predictors have emerged as speedy, 
accurate, and cost-effective approaches in predicting 
both HER2 status in tumor tissues and patient response 
to anti-HER2 treatments [14, 15]. In particular, deep 
learning (DL) algorithms as a set of techniques have the 
capacity to exploit large and complex real-world datasets 
for cross-domain and cross-discipline prediction and 
classification tasks [16, 17]. In the early stages, features of 
HER2 IHC images were manually obtained and utilized 
to generate an appropriate classifier for prediction [18]. 
With the rapid development of deep learning, people 
started to use convolutional neural network (CNN) for 
HER2 scoring, which was able to automatically learn 
high-level semantic features through a hierarchical deep 
architecture [19, 20]. In recent years, there has been a 
growing interest in predicting HER2 scores from HE 
slides that are more cost-effective and readily available. 
Artificial intelligence (AI) technology has been applied 
for prediction of HER2 status or scores directly from 
HE slides [21–23]. Representatively, Lu et al. proposed a 
graph neural network (GNN)-based weakly supervised 
method, SlideGraph +, which utilized graph structure to 
generate slide-level graph representation for prediction 
under the slide-level annotations [21]. It can capture the 
medical semantic relationship among different tissue 
regions within a single whole slide image (WSI) [21]. 
However, external validation of SlideGraph + in one 
test set didn’t take HER2 2 + into consideration, which 
tend to be a common and controversial typing, while 
the other external validation datasets taking HER2 
2 + into consideration but simply separate all cases as 
negative or positive without FISH results. As for accurate 
interpretation of HER2 IHC scores to distinguish HER2 0 
and HER2 1 + staining, AI-assisted technology had been 
reported to identify patients with HER2 0 tumors more 
accurately with decreased misinterpretation of HER2 
1 + tumors [24]. Similarly, this study merely focused on 
identifying HER2 0 and 1 + cases, but did  not contain 
other subtypes.

This study aims to exploit the ability of AI to provide 
accurate diagnosis of HER2 status from HE images 
under realistic clinical conditions. We also explored 
the reliability of HE in comparison with IHC slides as 
diagnostic basis, and evaluated the potential utility of 
computer-aided diagnosis in clinical practice.
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Materials and methods
Patient cohort
The BC patient cohort with HER2 scores comprising 
350 cases, named as USTC-BC, was randomly obtained 
from the First Affiliated Hospital of University of Science 
and Technology of China (USTC), from 2019 to 2022. 
Each case stood for a standard, high-quality HE-stained 
slide. In the USTC-BC, 59, 81, 105, and 105 cases were 
annotated as HER2 0, 1 +, 2 +, and 3 +, respectively, 
according to the 2018 ASCO/CAP guidelines. These 
cases were allocated into the training and test sets that 
contained 245 (70%) and 105 (30%) patients, respectively.

The HE-stained whole-slide images with HER2 scores 
of 502 cases were randomly obtained from the TCGA 
database and named as the TCGA-BRCA cohort. In the 
TCGA-BRCA cohort, 57, 211, 146, and 88 cases were 
scored as HER2 0, 1 +, 2 +, and 3 +, respectively. The 
TCGA-BRCA cohort was used as an independent test set 
for our model. Details of the USTC-BC and the TCGA-
BRCA datasets were shown in Table 1.

Slide preparation and whole‑slide images
Tissue blocks with the minimal proportion of ductal 
carcinoma in  situ were select for hematoxylin-eosin 
(HE) or immunohistochemistry (IHC) stain. The IHC 
procedures of all slides were conducted under the same 
laboratory conditions, using the same equipment and 
reagents (Ventana Medical Systems, Roche), and the 
HER2 results were interpreted by two senior pathologists 
to ensure the consistency.

Whole slide images were obtained for all the 
HE-stained slides by scanning at × 40 magnification with 
a whole-slide imaging scanner (Slide scanner SQS-120P; 
Shenzhen Shengqiang Technology Co, Ltd, Shenzhen, 
Guangdong, China).

Weakly supervised learning
The kernel attention transformer (KAT) method was 
applied to extract hierarchical context information from 
local regions of the WSIs and supply various diagnosis 
information [25] for AI model under weakly supervised 
learning. Before the training of AI model, the patches 
were extracted as 512-dimension features by a pathology 
language-image pre-trained network, namely the 
Pathology Language and Image Pre-Training (PLIP) [26], 
which provided the cross-modal, semantic correlation, 
and multi-perspective feature representations compared 
to the unimodal (image-based) model. The corresponding 
coordinates of the patches were clustered to obtain a set 
of anchors. Each anchor can generate the hierarchical 
anchor-related masks for all the patches based on spatial 
distance, which indicated the calculated weights between 
the anchor and each patch. For modeling the pair-wise 
dependencies between the anchor and the patch, a set 
of tokens were defined as the kernels, and each kernel 
corresponded to an anchor along with its anchor-related 
masks. To aggregate the information from all the kernels, 
the class token was used for information exchange with 
the kernels and achieved the prediction of HER2 score. 
Overall, the input of the AI model consisted of the 
patch features, kernels, class token, and anchor-related 
masks. The structure of AI model comprised multiple 
KAT modules. Each KAT module included two layer-
normalization layers, one kernel-attention layer [7], 
and one feed-forward layer. During the model training 
process, we utilized fivefold cross-validation to enhance 
the stability and generalization capability of our AI 
model. Specifically, we randomly divide the 245 training 
cases into five subsets, successively selected one subset 
as the validation set, and used the remaining four subsets 
as the training set, conducting five independent training 
and validation processes. This approach can utilize all the 
data for training, minimize the bias caused by a single 
partition, and obtain a more comprehensive performance 
evaluation result. Moreover, in each fold of training, we 
employ early stopping to prevent model overfitting. In 
particular, we continuously monitor the performance 
on the validation set during training, and when the 
performance on the validation set no longer improves 
or even declines over a certain number of iterations, 
we terminate the AI model training and use the current 
optimal model to predict the 105 test cases. This method 
not only effectively avoids overfitting but also helps us 
determine the best test model, thereby enhancing the 
generalization capability and reliability of our AI model. 
In the end, each case was predicted using the trained AI 
model, and the interpretability analysis was performed 
and visualized with the attention heatmap.

Table 1 Composition of training data set and test data set of 
two data sets

Dataset type Her2 scores Training data set Test data set

USTC-BC HER2 0 41 slides 18 slides

HER2 1 + 56 slides 24 slides

HER2 2 + 74 slides 31 slides

HER2 3 + 74 slides 32 slides

Total 245 slides 105 slides

350 slides

TCGA-BRCA HER2 0 40 slides 17 slides

HER2 1 + 148 slides 63 slides

HER2 2 + 102 slides 44 slides

HER2 3 + 62 slides 26 slides

Total 352 slides 150 slides

502 slides
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Like most BC samples processed in clinical prac-
tice, the 350 cases in this study had limited annotation 
information (only available slide-level labels), which 
made the weakly supervised learning method par-
ticularly suitable for the HER2 scoring task. Because 
the high resolution of WSI hampered direct input for 
model training, pre-processing was performed for 
all the WSIs. To this end, each WSI was divided into 
non-overlapping patches with the fixed-size (256 × 256 
pixels) and the corresponding coordinates of these 

patches were obtained by a window sliding strategy. 
After then, the background patches were removed and 
tissue-related patches were acquired by the tissue seg-
mentation. Hierarchical context information from local 
regions of the WSIs was extracted by KAT to get vari-
ous diagnosis information for AI model under weakly 
supervised learning. Information from all the kernels 
was aggregated to achieve the prediction of HER2 score 
(Fig. 1).

Fig. 1 Overview of the study. a The patient cohort of the in-house USTC-BC dataset, which displays the proportions of different HER2 expression 
levels and the division of data for experiments. b The WSI pre-processing. Each WSI is divided into a set of patches and corresponding coordinates. 
c Overview of the AI model. The network structure of the AI model is mainly composed of the Kernel Attention Transformer (KAT) modules. 
The input of the AI model consists of two parts: the patch features extracted by a pre-trained feature extractor and the anchors generated 
by the coordinates of the patches. The output includes two parts: the probability corresponding to each predicted category and the attention 
scores used for interpretative analysis. d The structure of the KAT module. Each KAT module has two layer-normalization layers, one kernel-attention 
layer, and one feed-forward layer
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Statistical analysis
In the testing phase, the results generated by the AI 
model include the predicted probabilities for each cat-
egory. Among these predicted probabilities, the category 
with the highest probability is designated as the final 
predicted category of the AI model. The final prediction 
results are then compared with the actual outcomes to 
assess the accuracy of the AI model. Additionally, the F1 
score serves as an indicator of the AI model for improv-
ing both precision and recall. Importantly, evaluating the 
area under the ROC curve for each category provides a 
more significant measure of the generalization ability of 
the AI model. In this study, we utilize Python (version 
3.8) with the ‘numpy’ (version 1.22.3 for array computa-
tion) and ‘scikit-learn’ (version 1.2.0 for providing some 
simple tools of data analysis) packages to calculate all 
evaluation metrics. For Fig.  2, it is conducted and ana-
lyzed using the ‘matplotlib’ package of Python. At last, 
the false positive and false negative rates on USTC-BC 
dataset under different threshold settings are calculated.

Results
After the training of the AI model with fivefold cross 
validation on data of 245 tumor cases, we conducted 
a comparative experiment and then measured the 
HER2 scoring power of our AI model on the test set of 
105 tumor cases. In the comparative experiment, our 
AI model and the abovementioned state-of-the-art 
method SlideGraph + were evaluated on the TCGA-
BRCA dataset and our in-house USTC-BC dataset in 
terms of ACC, AUC, and F1 score (Table  2). In detail, 
with the in-house USTC-BC dataset, our AI model 
obtained ACC of 0.556, AUC of 0.795, and F1 score of 
0.556, standing for improvement of 6.3% in ACC, 2.7% 
in AUC, and 6.3% in F1 compared to SlideGraph +. 
Likewise, our AI model reached ACC of 0.389, AUC of 
0.688, and F1 score of 0.389 on the public TCGA-BRCA 
dataset. Furthermore, we performed an external dataset 
testing experiment to validate the generalization ability 
of our AI model. Specifically, the TCGA-BRCA dataset 
was utilized as an external test dataset for our AI model 
trained on the in-house USTC-BC dataset, we attained 
metrics of 0.314, 0.579, and 0.314 for ACC, AUC, and 
F1, respectively, surpassing the validation results of 
SlideGraph + (0.301 for ACC, 0.564 for AUC, and 0.301 
for F1 score). Overall, our AI model effectively predicted 
HER2 scores from HE-stained slides on both datasets. 
In addition, we generated the ROC curves of our AI 
model and SlideGraph + for each category in these two 
datasets (Fig. 2). As can be seen, it was more challenging 
to effectively identify the HER2 1 + compared to the 
HER2 0, HER2 2 +, and HER2 3 + categories, which was 

consistent with the frequent misidentification of HER2 
1 + as HER2 0 or HER2 2 + by pathologists.

The interpretability of AI models was crucial for the 
understanding of the results generated by AI, particularly 
in predicting HER2 scores from HE slides. In this aspect, 
attention heatmaps were generated based on model 
attention scores of different tissue regions to illustrate the 
visualized results of our AI model (Fig.  3). Specifically, 
Fig. 3a shows the thumbnails of the HE slides and Fig. 3d 
displays the randomly magnification of HE images, all 
showing invasive carcinoma. Figure  3b presents the 
heatmaps of the HE slides, where regions with higher 
attention scores indicate areas that the model focuses 
on, which are strongly correlated with the results of the 
AI analysis. Whereas HE slides cannot directly reflect 
HER2 protein levels, the counterpart IHC slides facili-
tated the revisit of the attention heatmaps generated by 
the AI model (Fig. 3c). Indeed, the regions of high atten-
tion in the attention heatmaps were consistent with the 
regions of HER2 expression in the IHC images (Fig.  3). 
Besides, fluorescence in  situ hybridization (FISH) test-
ing have been performed on a subset of our cases includ-
ing 20 cases each of HER2 0, 1 +, 2 +, and 3 + to validate 
the HER2 status identified by our AI model. All HER2 
3 + cases showed HER2 amplification (20/20, 100%), and 
none of HER2 0 and 1 + cases showed HER2 amplifica-
tion (0/20, 0%). Four cases of HER2 2 + showed HER2 
amplification (4/20, 20%) (Fig. 3e). The FISH results were 
consistent with the IHC findings, further supporting the 
reliability of our AI model. Therefore, our AI model is 
a highly interpretable model with the capacity to iden-
tify tumor regions of HER2 protein expression from HE 
slides.

We have calculated the false positive and false negative 
rates on USTC-BC dataset under different threshold 
settings, with results presented in Supplementary Table 1. 
On the USTC-BC dataset, both false positive rate and 
false negative rate are low (< 0.25). Overall, through this 
approach, setting reasonable decision-making strategies 
can effectively control type 1 and 2 statistic errors that 
could affect the generalisation of the study.

Discussion
HER2 protein overexpression and/or HER2 gene ampli-
fication occur in ~ 20% of invasive breast cancers, which 
has been recognized as a sole predictive marker for bene-
fits from HER2-targeted therapy [9]. As a routine practice 
for newly diagnosed BC, IHC is used to screen and deter-
mine the HER2-positive and HER2-negative cases, and 
ISH is performed as a confirmation test for HER2 IHC 
equivocal cases. In clinical trials, newly developed con-
jugated antibodies (Trastuzumab Deruxtecan, DS-8201) 
demonstrated a significant effect in treating metastatic 
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Fig. 2 The receiver operating characteristic (ROC) curves of SlideGraph + (left) and our AI model (right). These ROC curves show the area 
under the ROC curve (AUC) for each level of HER2 expression: a In the USTC-BC dataset. b In the TCGA-BRCA dataset. c In the TCGA-BRCA 
as an external test set
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or primary unresectable breast cancer patients, unveiling 
an advent that HER2-low BC becomes treatable with the 
new generation of HER2-directed antibody-drug conju-
gates (ADCs) [10].

As to HER2 interpretation, pitfalls such as intratumoral 
HER2 heterogeneity and increase in chromosome enu-
meration probe 17 signals may lead to inaccurate assess-
ment of HER2 status. According to the 2018 ASCO/CAP 
guidelines, the assessment of IHC-stained slides based 
on visual observation is affected by the heterogeneous 

staining patterns and inter-pathologist variability. HER2 
heterogeneity was more common in HER2 1 + and HER2 
2 + tumors, making it challenging to distinguish HER2 
1 + from HER2 0 and HER2 2 +. Consequently, diag-
nostic consistency was significantly lower in determin-
ing the difference between HER2 1 + and HER2 0 or 
HER2 2 + samples relative to that between HER2 2 + and 
3 + cases (26% vs. 58%) [27]. Pathologist-related rea-
sons, such as fatigue, stress, and other emotional states, 
also contribute to diagnostic variability. Therefore, 

Table 2 Results (ACC, AUC, F1) of our AI model and SlideGraph + 

*TCGA-BRCA was used as the external test set

Method USTC‑BC
(HER2 0, HER2 1 + , HER2 2 + , HER2 3 +)

TCGA‑BRCA 
(HER2 0, HER2 1 + , HER2 2 + , HER2 3 +)

TCGA‑BRCA*
(HER2 0, HER2 1 + , HER2 2 + , HER2 3 +)

ACC AUC F1 ACC AUC F1 ACC AUC F1

SlideGraph + 0.493 ± 0.043 0.768 ± 0.014 0.493 ± 0.043 0.376 ± 0.015 0.654 ± 0.017 0.376 ± 0.015 0.301 ± 0.017 0.564 ± 0.023 0.301 ± 0.017

Our AI Model 0.556 ± 0.050 0.795 ± 0.028 0.556 ± 0.050 0.389 ± 0.020 0.688 ± 0.008 0.389 ± 0.020 0.314 ± 0.020 0.579 ± 0.029 0.314 ± 0.020
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Fig. 3 Visualization based on the attention map in our AI model. a The overview thumbnails of HE slides. b The attention heatmaps. c The 
overview thumbnails of the corresponding IHC slides. d Randomly magnified HE stained images. e Fluorescence in situ hybridization (FISH) results 
corresponding to different HER2 expression statuses
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pathologists often diagnose equivocal samples as HER2 
2 + in order to request ISH testing for a more conclusive 
decision, which would be costly and labor-consuming 
[28].

Digital pathology to a large extent would solve the 
abovementioned problems. Alternative methods, such 
as quantitative fluorescence assays or digital image 
analysis (DIA), have been proposed for the identification 
of the HER2-low category [29, 30]. With the rise of 
deep learning, CNN has been employed for automated 
HER2 scoring of IHC slides [20]. In recent years, a 
GrayMap + CNN model was developed to predict 
HER2 expression levels and gene mutations based on 
WSI of HER2 IHC sections with high accuracy, which 
demonstrated a promising future of digital pathology 
for accurate HER2 interpretation [31]. Compared with 
IHC slides, HE slides are more cost-effective and more 
readily available in clinical practice. Not surprisingly, 
there has been a growing interest in predicting HER2 
expression from HE images. Based on the method of 
SlideGraph +, Lu et  al. [21] proposed a graph neural 
network (GNN) to generate the slide-level graph for 
prediction of HER2 status at the WSI level, which was 
useful but had its limitations in case selection when 
doing external validation. In addition, Shovon et  al. 
presented the HE-HER2 Net on the basis of transfer 
learning to quantify the HER2 expression status from 
HE images [23]. Despite the utilization of these methods 
in predicting HER2 scores or status from HE slides, the 
features of WSI extracted by these methods were not 
strictly correlated to the information of HER2 protein 
expression in IHC slides in most studies. Therefore, 
the interpretability of distinct models requires further 
research, which constitutes a major task of our AI model.

HER2 status has been evaluated by diaminobenzidine 
(DAB) density features standing for the areas and 
intensity of membranous DAB staining on IHC images 
that represent the level of HER2 protein expression. 
In HE slides, HER2 status was shown to be associated 
with the different types of nuclei in BCs. Based on this, 
we used HE images with corresponding HER2 scores 
and developed a deep convolutional neural network 
predictor to evaluate the status of HER2 expression in 
a given HE image region. In this work, we adopted the 
KAT method for training in order to extract hierarchical 
context information from local regions of the WSIs and 
supply various diagnosis information for predicting 
HER2 scores in BC. With the in-house USTC-BC dataset, 
after deep learning of the data from 245 tumor cases 
with fivefold cross validation, our AI model obtained 
ACC of 0.556, AUC of 0.795, and F1 score of 0.556 in 
the test set of 105 tumor cases. The evaluations of our 
AI model and the state-of-the-art SlideGraph + method 

with the public TCGA-BRCA dataset and the in-house 
USTC-BC dataset for HER2 scoring demonstrated 
a superior performance of our AI model in terms of 
ACC, AUC and F1 score. To validate the generalization 
performance of our AI model, we conducted validation 
experiments using an external test set. Specifically, our 
AI model was trained on data from the USTC-BC dataset 
and then tested on data from the TCGA-BRCA dataset. 
The metrics of ACC, AUC, and F1 were all superior to 
the results of SlideGraph +. Furthermore, from the 
ROC curves of our AI model and SlideGraph + for each 
category in the two datasets, it was obviously more 
challenging to effectively identify HER2 1 + compared to 
HER2 0, HER2 2 +, and HER2 3 + categories, which was 
consistent with the frequent misidentification of HER2 
1 + as HER2 0 or HER2 2 + on conventional microscopic 
examination. The interpretation consistency of HER2 
1 + was worse than that of HER2 0 and HER2 2 +, but it 
was improved significantly with the help of AI [24]. DAB 
density evaluation with the help of AI gives much higher 
AUC, indicating a better HER2 prediction performance 
than the DAB density estimates only.

To assess the interpretability and capability of our AI 
model, the attention heatmaps generated by our AI model 
for the HE slides were compared with the corresponding 
the staining patterns of the corresponding IHC slides due 
to HE slides cannot directly reflect HER2 protein levels. 
In the HER2-positive cases, large areas were estimated 
as of high DAB density that were displayed in orange 
and red in the heatmaps. In contrast, in HER2-negative 
cases, the majority of the tissue region was estimated as 
of low DAB density lacking HER2 protein expression. 
The highlighted activation areas in the heatmaps are 
consistent with the DAB density in the corresponding 
IHC images. This supports the idea of using DAB density 
as a potential feature for HER2 status prediction. It could 
be observed that only few areas in the HER2-negative 
samples contribute to the HER2 positivity, whereas the 
majority of tissue regions in the positive cases have high 
HER2 prediction scores. It should also be noted that 
regions with high HER2 prediction scores are consistent 
with high DAB intensity areas in the corresponding IHC 
images. Visualization of HER2 scores demonstrated the 
capacity of our AI model in identifying regions with 
HER2 protein expression from HE slides. Although the 
aforementioned methods can predict the HER2 scores or 
status directly from HE slides, the features learned from 
the HE slides may not fully reflect the expression level 
of HER2 protein hidden in the IHC slide, and the model 
interpretability may need further exploration [21–23, 30]. 
In conclusion, compared with previous methods, our AI 
model is more powerful in prediction of HER2 status 
with HE instead of IHC sections, including HER2 0, 1 +, 
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2 + and 3 + cases, while the study of Wu et al. [24] focused 
only on differentiating HER2 0 and HER2 1 + tumors, and 
the method of SlideGraph + skipped HER2 2 + cases [21]. 
Up to now, few studies have evaluated the role of AI in 
differentiating all HER2 status by HE-staining, except for 
our AI model.

Despite the promising results demonstrated in 
this study, several limitations and challenges should 
be addressed, which highlight the need for further 
refinement and validation. One critical limitation lies 
in the dataset, whose sample size remains insufficient 
to ensure robust model generalizability, thereby 
necessitating expansion to include a larger and more 
diverse cohorts. Furthermore, the dataset suffers 
from class imbalance, particularly in the HER2 0 
and 1 + categories, which, despite the application of 
resampling strategies, continues to undermine model 
performance and may lead to biased predictions. The 
predictive performance of the AI model, especially 
in distinguishing between HER2 0 and 1 + categories, 
requires significant improvement, as these categories 
exhibit subtle pathological differences that complicate 
accurate classification.

In addition to these limitations, the study faces 
several challenges that hinder the clinical applicability 
of the model. Variations in slide preparation, staining 
protocols, and digitization techniques across different 
medical centers introduce substantial heterogeneity 
into the data, which limits the generalizability of the 
AI model and complicates its deployment in diverse 
clinical settings. Another challenge arises from the 
subjective nature of pathological annotations, which 
rely heavily on the judgment of individual pathologists 
and may lead to inconsistencies that affect both model 
training and validation. Given these challenges, the 
current performance of AI model remains insufficient for 
clinical implementation due to inadequate accuracy and 
reliability.

To address these limitations and challenges, future 
research will focus on several critical directions. 
Multi-center data will be incorporated to enhance 
the ability of AI model to handle data heterogeneity, 
which is critical for improving generalizability across 
different institutions. Additional training data will be 
collected to address class imbalance and further refine 
model performance, particularly for underrepresented 
categories. Moreover, multi-modal data integration will 
be explored to provide more comprehensive information, 
thereby enhancing the predictive capabilities of the 
model. These efforts, which aim to bridge the gap 
between research and clinical practice, are essential 
for ensuring the model’s utility and reliability in real-
world applications. Of course, from the perspective of 

treatment and clinical outcome, in future research, we 
will continue the follow-up to evaluate the relationship 
between HER2 interpretation results by our AI model 
with long-term clinical outcomes.

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s13058- 025- 01998-8.

Additional file1 (DOC 30 KB)

Author contributions
Study conception and design contributed by JD, JS, YZ, HW. Acquisition of 
data con-tributed by JD, GL, JC, WW, HW. Statistical analysis contributed by 
JD, JS, DS, YZ, WW. Machine learning analysis contributed by JS, DS, YW, YZ. 
Writing, drafting, and reviewing manuscript contributed by JD, JS, DS, GL, JC, 
WZ, YZ, HW. All authors reviewed the manuscript.

Funding
This work was partly supported by Joint Fund for Medical Artificial Intelligence 
(No. MAI2023C014), partly supported by Research Funds of Centre for 
Leading Medicine and Advanced Technologies of IHM (No. 2023IHM01043), 
partly supported by the Anhui Provincial Natural Science Foundation (No. 
2408085MF162), partly supported by the National Natural Science Foundation 
of China (No. 62171007, 61906058, 61901018, and 61771031), partly 
supported by Beijing Natural Science Foundation (Grant No. 7242270), partly 
supported by the Fundamental Research Funds for the Central Universities 
of China (No. YWF-23-Q-1075), partly supported by Scientific Research 
Project of Anhui Provincial Education Department (No. 2023AH040404), 
partly supported by undergraduate college student innovation and 
entrepreneurship training program (No. S202210358114).

Availability of data and materials
No datasets were generated or analysed during the current study.

Declarations

Ethics approval and consent to participate
This study was approved by Medical Research Ethics Committee of the First 
Affiliated Hospital of the University of Science and Technology of China (No. 
2023KY-378). Patient consent was not required because all samples were 
archival.

Competing interests
The authors declare no competing interests.

Author details
1 Department of Pathology, The First Affiliated Hospital of USTC, Division 
of Life Sciences and Medicine, University of Science and Technology of China, 
Hefei 230036, Anhui, China. 2 Intelligent Pathology Institute, The First Affiliated 
Hospital of USTC, Division of Life Sciences and Medicine, University of Science 
and Technology of China, Hefei 230036, Anhui, China. 3 School of Software, 
Hefei University of Technology, Hefei 230601, China. 4 School of Computer 
Science and Information Engineering, Hefei University of Technology, 
Hefei 230601, Anhui, China. 5 School of Life Sciences, Division of Life Sciences 
and Medicine, University of Science and Technology of China, Hefei 230027, 
Anhui, China. 6 School of Engineering Medicine, Beijing Advanced Innovation 
Center on Biomedical Engineering, Beihang University, Beijing 100191, China. 
7 Department of Pathology, Centre for Leading Medicine and Advanced 
Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life 
Sciences and Medicine, University of Science and Technology of China, 
Hefei 230001, Anhui, China. 

Received: 19 December 2024   Accepted: 10 March 2025

https://doi.org/10.1186/s13058-025-01998-8
https://doi.org/10.1186/s13058-025-01998-8


Page 10 of 10Du et al. Breast Cancer Research           (2025) 27:57 

References
 1. Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I, et al. 

Global cancer statistics 2022: GLOBOCAN estimates of incidence and 
mortality worldwide for 36 cancers in 185 Countries. CA Cancer J Clin. 
2024. https:// doi. org/ 10. 3322/ caac. 21834.

 2. Cao W, Chen HD, Yu YW, Li N, Chen WQ. Changing profiles of cancer bur-
den worldwide and in China: a secondary analysis of the global cancer 
statistics 2020. Chin Med J (Engl). 2021;134:783–91.

 3. Xu Y, Gong M, Wang Y, Yang Y, Liu S, Zeng Q. Global trends and forecasts 
of breast cancer incidence and deaths. Sci Data. 2023;10:334.

 4. Tai W, Mahato R, Cheng K. The role of HER2 in cancer therapy and tar-
geted drug delivery. J Control Release. 2010;146:264–75.

 5. Marchiò C, Annaratone L, Marques A, Casorzo L, Berrino E, Sapino A. 
Evolving concepts in HER2 evaluation in breast cancer: heterogeneity, 
HER2-low carcinomas and beyond. Semin Cancer Biol. 2021;72:123–35.

 6. Wolff AC, Hammond MEH, Allison KH, Harvey BE, Mangu PB, Bartlett 
JMS, et al. Human epidermal growth factor receptor 2 testing in breast 
cancer: American Society of Clinical Oncology/College of American 
Pathologists Clinical Practice Guideline Focused Update. J Clin Oncol. 
2018;36:2105–22.

 7. Swain SM, Shastry M, Hamilton E. Targeting HER2-positive breast cancer: 
advances and future directions. Nat Rev Drug Discov. 2023;22:101–26.

 8. Tarantino P, Hamilton E, Tolaney SM, Cortes J, Morganti S, Ferraro E, et al. 
HER2-low breast cancer: pathological and clinical landscape. J Clin Oncol. 
2020;38:1951–62.

 9. Ahh S, Woo JW, Lee K, Park SY. HER2 status in breast cancer: changes in 
guidelines and complicating factors for interpretation. J Pathol Transl 
Med. 2020;54:34–44.

 10. Modi S, Jacot W, Yamashita T, Sohn J, Vidal M, Tokunaga E, et al. Trastu-
zumab deruxtecan in previously treated HER2-low advanced breast 
cancer. N Engl J Med. 2022;387:9–20.

 11. Gavrielides MA, Gallas BD, Lenz P, Badano A, Hewitt SM. Observer variabil-
ity in the interpretation of HER2/neu immunohistochemical expression 
with unaided and computer-aided digital microscopy. Arch Pathol Lab 
Med. 2011;135:233–42.

 12. Hsu CY, Ho DMT, Yang CF, Lai CR, Yu IT, Chiang H. Interobserver reproduc-
ibility of Her-2/neu protein overexpression in invasive breast carcinoma 
using the DAKO HercepTest. Am J Clin Pathol. 2002;118:693–8.

 13. Bussolati G, Annaratone L, Maletta F. The pre-analytical phase in surgical 
pathology. Recent Results Cancer Res Fortschritte Krebsforsch Progres 
Dans Rech Sur Cancer. 2015;199:1–13.

 14. Farahmand S, Fernandez AI, Ahmed FS, Rimm DL, Chuang JH, Reisen-
bichler E, et al. Deep learning trained on hematoxylin and eosin tumor 
region of Interest predicts HER2 status and trastuzumab treatment 
response in HER2+ breast cancer. Mod Pathol. 2022;35:44–51.

 15. Yousif M, Huang Y, Sciallis A, Kleer CG, Pang J, Smola B, et al. Quantitative 
image analysis as an adjunct to manual scoring of ER, PgR, and HER2 in 
invasive breast carcinoma. Am J Clin Pathol. 2022;157:899–907.

 16. Nguyen H, Kieu LM, Wen T, Cai C. Deep learning methods in transporta-
tion domain: a review. IET Intell Transp Syst. 2018;12:998–1004.

 17. Nassif AB, Shahin I, Attili I, Azzeh M, Shaalan K. Speech recognition using 
deep neural networks: a systematic review. IEEE Access. 2019;7:19143–65.

 18. Mukundan R. Analysis of image feature characteristica for automated 
scoring of HER2 in histology slides. Journal of Imaging. 2019;5:35–46.

 19. Saha M, Chakraborty C. Her2net: a deep framework for semantic segmen-
tation and classification of cell membranes and nuclei in breast cancer 
evaluation. IEEE Trans Image Process. 2018;27:2189–200.

 20. Qaiser T, Rajpoot NM. Learning where to see: a novel attention model 
for automated immunohistochemical scoring. IEEE Trans Med Imaging. 
2019;38:2620–31.

 21. Lu W, Toss M, Dawood M, Rakha E, Rajpoot N, Minhas F. Slidegraph+: 
whole slide image level graphs to predict HER2 status in breast cancer. 
Med Image Anal. 2022;80:102486–98.

 22. Wang J, Zhu X, Chen K, Hao L, Liu Y. Hahnet: A convolutional neural 
network for HER2 status classification of breast cancer. BMC Bioinform. 
2023;24:353–68.

 23. Shovon MSH, Islam MJ, Nabil MNAK, Molla MM, Jony AI, Mridha M. 
Strategies for enhancing the multi-stage classification performances of 
HER2 breast cancer from hematoxylin and eosin images. Diagnostics. 
2022;12:2825–45.

 24. Si Wu, Yue M, Zhang J, Li X, Li Z, Zhang H, et al. The role of artificial intel-
ligence in accurate interpretation of HER2 immunohistochemical scores 
0 and 1+ in breast cancer. Mod Pathol. 2023;36(3):100054–63.

 25. Zheng Y, Li J, Shi J, Xie F, Huai J, Cao M, et al. Kernel attention transformer 
for histopathology whole slide image analysis and assistant cancer diag-
nosis. IEEE Trans Med Imaging. 2023;42:2726–39.

 26. Huang Z, Bianchi F, Yuksekgonul M, Montine TJ, Zou J. A visual-language 
foundation model for pathology image analysis using medical Twitter. 
Nat Med. 2023;29:2307–16.

 27. Fernandez AI, Liu M, Bellizzi A, Brock J, Fadare O, Hanley K, et al. Examina-
tion of low ERBB2 protein expression in breast cancer tissue. JAMA Oncol. 
2022;8:1–4.

 28. Moelans C, de Weger R, Van der Wall E, van Diest P. Current technologies 
for HER2 testing in breast cancer. Crit Rev Oncol. 2011;80:380–92.

 29. Moutafi M, Robbins CJ, Yaghoobi V, Fernandez AI, Martinez-Morilla S, 
Xirou V, et al. Quantitative measurement of HER2 expression to subclas-
sify ERBB2 unamplified breast cancer. Lab Invest. 2022;102:1101–8.

 30. Anand D, Kurian NC, Dhage S, Kumar N, Rane S, Gann PH, et al. Deep 
learning to estimate human epidermal growth factor receptor 2 status 
from hematoxylin and eosin-stained breast tissue images. J Pathol Inform. 
2020;11:19–26.

 31. Yao Q, Hou W, Wu K, Bai Y, Long M, Diao X, et al. Using whole slide gray 
value map to predict HER2 expression and FISH status in breast cancer. 
Cancers. 2022;14:6233–46.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.

https://doi.org/10.3322/caac.21834

	Machine learning prediction of HER2-low expression in breast cancers based on hematoxylin–eosin-stained slides
	Abstract 
	Background 
	Methods 
	Results 
	Conclusion 

	Introduction
	Materials and methods
	Patient cohort
	Slide preparation and whole-slide images
	Weakly supervised learning
	Statistical analysis

	Results
	Discussion
	References


