RESEARCH

Breast Cancer Research

Pathologic response rates in HER2-low versus HER2-zero early breast cancer patients receiving neoadjuvant therapy: a systematic review and meta-analysis

Francisco Cezar Aquino de Moraes^{1*}, Caio Henrique Duarte de Castro Ribeiro¹, Felipe Dircêu Dantas Leite Pessôa², Juliana Ramos Chaves³, Ana Paula Borges de Souza³, Diego Di Felipe Ávila Alcantara³, Margareth Maria Braun Guimarães Imbiriba³, Maria Cristina Figueroa Magalhães⁴ and Rommel Mario Rodríguez Burbano^{1,3}

Abstract

Background Currently, the primary methods for detecting HER2 expression levels are immunohistochemistry (IHC) and in situ hybridization (ISH), with the traditional standard being a HER2-positive score of 3 + accompanied by ERBB2 gene amplification detected through ISH. However, a new entity has recently emerged: HER2-low, defined as HER2 IHC 1 + or 2 + with negative ISH. HER2-low breast cancer, representing 45–60% of all HER2-negative tumors, has distinct biological characteristics and uncertain responses to conventional HER2-targeted therapies. Recent studies suggest varied clinical outcomes, highlighting the need for further investigation into the impact of HER2-low status on treatment efficacy and prognosis.

Objective This meta-analysis evaluates the difference in complete pathological response (pCR), disease-free survival (DFS), and overall survival (OS) between HER2-low and HER2-zero phenotypes.

Methods We systematically searched the main databases PubMed, Scopus, and Web of Science for articles evaluating women in neoadjuvant therapy expressing HER2-low and HER2-zero. We computed odds ratios (ORs) or hazard ratios (HRs) using DerSimonian and Laird random-effect models for all endpoints, with 95% confidence intervals (Cls). We assessed the heterogeneity using l² statistics. R, version 4.2.3, was used for statistical analyses.

Results 38 studies totaling 70,104 patients were included. The HER2-low group accounted for 61.3% of patients while HR + status represented 52.4% in the whole research. In 67,839 women, the pCR was analyzed, which in the overall cohort analysis favored the HER2-zero group (OR 0.84; 95% CI 0.78–0.90; p=0.000005; I²=15%). Subgroup analyses for triple-negative breast cancer (TNBC) and HR + patients also favored HER2-zero expression, with an OR of 0.91 (95% CI 0.83–1.0; p < 0.041; I²=12%) and 0.75 (95% CI 0.70–0.81; p < 0.000001; I²=0%), respectively. In the multivariate analysis across all patients, both DFS and OS outcomes were significantly favorable for the HER2-low expression group, with HR 0.8317 (95% CI 0.7036–0.9832; p=0.031) for DFS and HR 0.806 (95% CI 0.663–0.979; p=0.03) for OS.

*Correspondence: Francisco Cezar Aquino de Moraes francisco.cezar2205@gmail.com Full list of author information is available at the end of the article

© The Author(s) 2025. **Open Access** This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Conclusion Based on our findings, HER2-zero status is associated with a significantly higher pathological complete response (pCR) rate compared to HER2-low in early-stage breast cancer, and other survival outcomes. These results suggest that HER2-zero should be considered a prognostic factor in early-stage breast cancer and taken into account in neoadjuvant treatment planning and future clinical research.

Keywords Breast cancer, Neoadjuvant, Pathological complete response, HER2

Introduction

Patients with human epidermal growth factor receptor 2 (HER2)-positive breast cancer (BC) have been defined for more than 20 years, represent 15–20% of all BC cases, and exhibit aggressive biological behavior and an unfavorable prognosis [1–3]. The development of anti-HER2 agents has led to drastic changes in the disease's progression, resulting in increased favorable outcomes for HER2-positive patients [4, 5]. The main predictor of response to treatment is HER2 positivity, quantified by immunohistochemistry (IHC) 3+or in situ hybridization (ISH) (HER2 copies ≥ 6 or a HER2/CEP17 ratio ≥ 2.0) [6].

However, a new classification entity has recently emerged, termed BC HER2-low, representing 45–60% of all HER2-negative tumors [7–9]. Patients in this category do not seem to benefit from conventional HER2targeted therapies such as trastuzumab and pertuzumab [5, 10, 11]. However, antibody–drug conjugates (ADCs) like trastuzumab deruxecan (T-DXd) and trastuzumab duocarmazine (SYD985) show potential antitumor activity in HER2-low patients, garnering significant attention for this emerging subgroup [12–14].

Different studies suggest that HER2-low and HER2zero (negative) cancers have distinct biological, histological characteristics, and proliferation rates [15, 16]. However, the impact of HER2-low expression on chemotherapy response and survival in early-stage patients remains controversial [6]. Previous studies have reported that HER2-low patients do not seem to have a distinct prognostic value regarding pathological complete response (pCR) and survival following neoadjuvant chemotherapy (NAC) [17, 18]. Conversely, an analysis conducted by Denkert et al. involving 2310 patients from four prospective neoadjuvant clinical trials revealed a significant difference in the HER2-low subgroup, which had a lower pCR rate and higher survival compared to HER2zero patients [19]. These differences in clinical outcomes may reflect the significant variations between the populations included in each study. Thus, further research is essential to elucidate the influence of HER2 status on pCR, which currently represents an unmet medical need.

In recent years, the role of NAC has evolved dramatically, although residual disease after this treatment increases the risk of recurrence or death. Yet, the influence of HER2-low status on the clinical efficacy of NAC has not been fully elucidated. Therefore, we conducted a systematic review and meta-analysis to clarify the impact of HER2-low compared to HER2-zero on pCR in patients treated with NAC.

Methods

Protocol and registration

We conducted this systematic review and meta-analysis in strict accordance with the guidelines established by the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)[20] and the Cochrane Handbook for Systematic Reviews of Interventions [21]. Our protocol was pre-registered in the International Prospective Register of Systematic Reviews (PROSPERO) with the registration number CRD42024558430. The complete PRISMA Checklists are detailed in Tables S1 and S2, Supplementary Materials.

Our meta-analysis included studies that followed the following PICOTT question: *Population*—patients with early breast cancer receiving neoadjuvant therapy; *Intervention*—patients expressing HER2-low molecular type; *Control*—patients expressing HER2-zero molecular type; *Outcomes*—to evaluate the pathological complete response (pCR), disease-free survival (DFS), and overall survival (OS). Thus, we sought to answer the following question: is the expression of HER2-low vs HER2-zero associated with the best pCR, DFS, and OS rates?

Eligibility criteria

Studies that met the following eligibility criteria were included: (1) observational, case–control, and cohort studies; (2) enrolling patients who underwent neoad-juvant therapy; (3) patients \geq 18 years of age with early (non-metastatic) breast cancer; (4) comparative prognostic analysis between HER2-zero (IHC score 0) and HER2-low (IHC 1+or 2+and ISH/FISH negative) expression levels. We excluded studies with overlapping populations, randomized clinical trials, no outcomes of interest, and studies that did not specify the type of HER2 expression.

Search strategy

The studies included in this investigation were systematically searched in the Pubmed, Scopus, and Web of Science databases on June 15, 2024. No publication limits were applied. In the search strategy we combined the following related terms and their related MeSH variations using the Boolean operators (AND/OR): "Breast Cancer", "HER2", "Neoajudvant", "low", "zero". The complete search strategy with the MeSH terms is detailed in Table S3, Supplementary Material. Those found in the databases and the references of the articles were incorporated into the reference management software (EndNote[®], version X7, Thomson Reuters, Philadelphia, USA). Duplicate articles were automatically and manually excluded. Titles and abstracts of articles found in the databases were analyzed independently by two reviewers (C.H.D.C.R. and F.D.D.L.P.). Disagreements were resolved by consensus between two authors and the senior author, a third reviewer (C.H.D.C.R., F.D.D.L.P., and F.C.A.M.).

Data extraction

Two authors (C.H.D.C.R. and F.D.D.L.P.) extracted data of the following patient characteristics reported in the studies: number of patients with HER2-low or HER2zero; follow-up; age; menopausal status; HR status; histology; clinical T-stage; clinical N-stage; TNM stage; Ki-67. The ensuing outcomes of interest were extracted: Pathological complete response (PCR), defined as the absence of cancer in the breast surgical tissue specimens post-neoadjuvant therapy; Overall survival (OS), defined as the time from the start of treatment that patients are still alive; Disease-free survival (DFS) or recurrence-free survival (RFS), defined as the period after successful treatment in which there is no relapse of the disease. All endpoint definitions are consistent with the Standardized Definitions for Efficacy End Points (STEEP) criteria for breast cancer studies [22, 23]. For publications reporting results from the same study, the most recent or complete publication reporting relevant details for our analysis was considered.

Risk of bias assessment

The risk of biases was conducted individually among the three authors (F.D.D.L.P., C.H.D.C.R., and F.C.A.M.) and disagreements were resolved by consensus. To ensure the quality of the assessment, observational studies were analyzed using the Newcastle–Ottawa Scale (NOS) [24], classified as High-Quality, Moderate-Quality, or Low-Quality observational studies according to their results in three domains: Selection, Comparability, and Outcome. Funnel-plot analyses were employed to examine publication bias.

Statistical analysis

The hazard ratio (HR) was used to analyze the DFS and OS. We consider HR > 1 favoring the control group HER2-zero and HR < 1 favoring the intervention group HER2-low. For survival outcomes, the following

confounding factors were primarily considered in the multivariate analysis: HER2 status, age, T stage, N stage, histopathological type, grading, and hormone receptor status. The selection of these variables in the included studies was based on their statistical significance in univariate analysis (typically with a *P* value ≤ 0.2) or their clinical relevance. Those evaluated with binary outcomes were assessed with odds ratios (ORs), with 95% confidence intervals (CIs). The Cochrane Q-test and I² statistics were used to evaluate heterogeneity; P values > 0.10 and I2 values > 25% were considered to indicate significance for heterogeneity [25]. The Sidik-Jonkman estimator was used to calculate the tau2 variance between studies. We used DerSimonian and Laird random-effect models for all endpoints [26]. Publication bias was explored using Egger's linear regression test [27]. The packages used were "meta" and "metagen". Statistical analyses were performed using R statistical software, version 4.2.3 (R Foundation for Statistical Computing).

Results

Search results and characteristics of included studies

The selection process is detailed in a PRISMA flow diagram (Fig. 1). Our systematic search identified 8317 references. After removing 4304 duplicates and screening titles and abstracts for eligibility, we excluded 8238 references and assessed 79 full-text manuscripts for inclusion and exclusion criteria. Ultimately, 38 studies met the criteria and were included in the analysis, comprising 70,104 patients.

A total of 42,942 patients (61.3%) with early breast cancer expressed HER2-low, while 27,162 patients (38.7%) expressed HER2-zero. Among them, 6,683 patients (9.5%) were in the pre/perimenopausal status and 4854 in postmenopausal. The most common histological type was ductal, with 48,698 patients (69.5%). Hormone receptor status was positive in 36,750 patients (52.4%). The Clinical T-stage had 45,329 patients (64.7%) in stages cT0–cT2. The Clinical N-stage included 52,642 patients (75.1%) in stages N0-N1. Meanwhile, Clinical Stage I– II had 4611 patients (6.6%). The characteristics of the patients are summarized in Table 1.

Results based on outcome

Pathological complete response

Of the included studies [19, 23–59], 36 analyzed the pathological complete response (pCR), representing 67,839 patients. Among these women, the pCR rate significantly favored the HER2-zero phenotype (OR 0.84; 95% CI 0.78–0.90; p < 0.000005; $I^2 = 15\%$; Fig. 2). In the subgroup analysis, 40,121 women were HR + (hormone receptor-positive) and 27,718 were TNBC (triple-negative breast cancer). In both subgroups, the pCR rate

Fig. 1 PRISMA flow diagram of study screening and selection

favored the HER2-zero group. For the HR+subgroup, the results showed an OR of 0.75 (95% CI 0.70–0.81; p < 0.000001; $I^2 = 0\%$; Fig. 2a). For the TNBC subgroup, the results presented an OR of 0.91 (95% CI 0.83–1.0; p < 0.041; $I^2 = 12\%$; Fig. 2b).

Disease-free survival

Among the included studies, 16 presented analyses for DFS. In the univariate analysis, the HR+phenotype did not show statistical significance in favor of HER2-low (HR 1.005; 95% CI 0.823–1.226; p=0.963). Similarly, the TNBC phenotype also did not demonstrate statistical significance in favor of HER2-zero (HR 1.209; 95% CI 0.646–2.259; p=0.553). However, when considering all patients irrespective of hormone receptor status, the univariate analysis showed no significant benefit for HER2-low (HR 0.889; 95% CI 0.711–1.112; p=0.303).

In the multivariate analysis, the HR + phenotype still did not show statistical significance in favor of HER2-low (HR 0.875; 95% CI 0.745–1.028; p=0.104). For the TNBC phenotype, the analysis also did not demonstrate statistical significance in favor of HER2-zero (HR 0.947; 95% CI

0.676–1.326; p=0.751). When considering all patients, the HER2-low group showed a significant benefit (HR 0.8317; 95% CI 0.7036–0.9832; p=0.031). All data is available in Table 2.

Overall survival

Seventeen studies reported data for OS. The univariate analysis for the HR + phenotype did not indicate a significant benefit for the HER2-low group (HR 0.919; 95% CI 0.751–1.126; p=0.416). In the same way, for the TNBC phenotype, the results showed no significant difference favoring HER2-zero (HR 0.987; 95% CI 0.732–1.330; p=0.931). When considering the entire cohort, the univariate analysis did not reveal a significant benefit for HER2-low (HR 0.798; 95% CI 0.625–1.019; p=0.071).

In the multivariate analysis, the HR + phenotype exhibited a clear advantage for the HER2-low group (HR 0.825; 95% CI 0.779–0.875; p < 0.001). Meanwhile, for the TNBC phenotype, the data did not show a significant difference favoring HER2-zero (HR 0.945; 95% CI 0.636– 1.404; p=0.778). Analyzing all patients together, the multivariate results demonstrated a statistically significant improvement for those in the HER2-low group (HR 0.806; 95% CI 0.663–0.979; p=0.03). All data is available in Table 2.

Sensitivity analysis

We performed a leave-one-out sensitivity analysis for all outcomes. Heterogeneity was low when analyzing the primary outcome of pCR ($I^2 < 25\%$). However, our analysis showed increased heterogeneity in the outcomes of OS ($I^2 = 63\%$) and DFS ($I^2 = 61\%$) in both univariate and multivariate analyses. Despite performing sensitivity analyses on both OS and DFS outcomes, there were no studies that contributed asymmetrically to the results. In the GOSH plot, significant overlap between the two groups suggested low variance, with most heterogeneity concentrated on the high side, accompanied by a corresponding decrease on the low side (Fig. 3a). There was no significant variation in the stability analysis of the drapery plot in our study, an indication of the robustness of our results (Fig. 3b). The leave-one-out sensitivity and drapery plot analysis of the main results is detailed in Supplementary Figs. S1 and S5.

Estimation of publication bias

We conducted a funnel plot analysis for all outcomes (Fig. 4A). The X-axis corresponds to the odds ratio, while the Y-axis represents the standard error. The dashed lines indicate two standard errors on either side of the mean effect. Each circle is representative of one study. Additionally, Egger's test was used to statistically assess the asymmetry of the funnel plot. In the pCR analysis, the

studies
luded
of inc
Characteristics
Table 1

			follow-up (months)	of patients (<i>n</i>)	HER2-low/HER-0 (<i>n</i>)					
De Moura Leite et al. 2021 [28] Brazi	zil	2007-2018	59	855	285/570	HR+and HR-	T1-T4	N0-N3	-1	œ
Denkert et al. 2021 [19] Euro	be	2012-2019	47	2310	1098/1212	HR+and HR-	T1-T4	N0-N3	1–3	00
Kang et al. 2022 [29] Kore	ea	2014-2018	I	1572	754/818	HR+and HR-	T1-T4	N0-N3	1-3	7
Jing-Jing Li et al. 2023 [30] Chin	na .	2017-2017	59	283	239/44	HR + and HR –	T1-T4	N0-N3	2–3	6
Qiao et al. 2023 [31] Chin	na .	2017-2021	20	132	70/62	HR + and HR –	I	I	I	7
Shao et al. 2022 [32] Chin	na .	2017-2019	I	314	226/88	HR + and HR –	T1-T4	N0-N3	2–3	7
Xu et al. 2023 [33] Chin	na j	2018-2021	24	429	267/162	HR + and HR –	T1-T4	N0-N3	2–3	6
Garufi et al. 2023 [34] Italy	- /	I	53	566	340/226	HR+	I	I	I	00
Pöschke et al. 2023 [35] Gern	many	1998–2020	240 (20y)	1373	930/443	HR+and HR-	T1-T4	+ N - ON	1-3	7
Yang et al. 2023 [36] Chin	na .	2015-2017	I	177	117/60	HR + and HR -	T1-T4	I	I	80
Dai et al. 2023 [37] Chin	, er	2015-2016	71	55	24/21	HR+and HR-	I	I	1-3	00
Guochun Zhang et al. 2022 [38] Chin	, er	2016-2017	I	87	63/24	HR + and HR -	T1-T4	N0-N3	1-3	7
Karakas et al. 2023 [39] USA		2020-2021	49	130	75/55	HR + and HR -	I	I	1-4	6
Ma et al. 2023 [40] Chin	, er	2015-2021	55	546	292/254	HR-	Т1-Т4	N0-N3	1-3	7
Miglietta et al. 2022 [41] Italy	, ,	2002-2018	I	261	105/156	HR+and HR-	I	I	I	7
Alves et al. 2022 [42] Portu	tugal 🧯	2015-2020	36	72	41/31	HR+and HR-	T1-T4	N0-N3	2–3	6
llie et al. 2023 [18] Franc	, apr	2007-2018	54 (4.5y)	511	236/275	HR+and HR-	T0-T4	N0-N3	1–3	00
Zhu et al. 2023 [43] Chin.	, er	2009–2020	24	1473	1023/450	HR+and HR-	I	I	I	7
Wang et al. 2023 [44] Chin.	, er	2018-2022	18	148	93/55	HR+and HR-	I	I	I	9
Toss et al. 2022 [45] Italy	, , , , , , , , , , , , , , , , , , , ,	2008–2020	55	142	82/57	HR-	T1-T4	+ N - ON	I	6
Shi et al. 2023 [46] Chin.	, er	2014-2022	I	430	249/181	HR + and HR –	Т1-Т4	+ N - ON	I	8
Nonneville et al. 2022 [47] Franc	, apr	2005-2021	73	1111	456/655	HR+and HR-	T0-T4	N0 – ≥ N1	1-0	00
Huiyue Li et al. 2023 [48] USA		2010-2018	65	45,331	28,172/17159	HR+and HR-	T1-T4	N0-N3	I	7
Domergue et al. 2022 [49] Franc	, eor	2005-2020	73	437	121/316	HR-	T0-T4	N0 – ≥ N1	1-3	6
Di Cosimo et al. 2022 [50] Italy	,	2009–2020	60	444	335/109	HR+and HR-	I	N0-N3	13	7
Shichao Zhang et al. 2023 [51] Chin.	, er	2011-2022	40	3070	2340/730	HR+	I	I	I	7
Yi et al. 2023 [52] Chin.	, er	2017-2020	32	86	62/24	HR+and HR-	T1-T4	N0-N3	1-3	6
Shiyuan Zhang et al. 2023 [53] Chin.	ia ć	2011-2019	67	653	279/374	HR+and HR-	T1-T4	N0-N3	1-3	8
Reinert et al. 2021 [54] Brazi	7	٨A	56	331	167/164	HR+and HR-	I	I	I	7
Vijun Li et al. 2023 [55] Chin	na j	2010-2020		1027	678/349	HR+and HR-	T1-T4	N0-N3	1-3	6
Jin et al. 2023 [56] Chin	na j	2013-2019	43	693	561/132	HR + and HR –	T1-T3	N0-N3	I	6
Douganiotis et al. 2022 [57] Grec	ce	2007-2021	34	113	80/33	HR+	I	I	I	8

Author, year	Country	Inclusion period	Median follow-up (months)	Total number of patients (<i>n</i>)	Patients with HER2-low/HER-0 (<i>n</i>)	HR status	Clinical T stage	Clinical N stage	Stage	NOS scale
Djurmez et al. 2023 [58]	Serbia	2020-2021	I	75	62/13	HR+and HR-	I	I	I	∞
Tarantino et al. 2024 [59]	NSA	2016-2022	35 (2.94y)	991	491/500	HR+and HR-	I	N0-N3	I	6
Tang et al. 2022 [60]	China	2012-2019	I	905	685/220	HR+and HR-	T1-T4	N0-N3	I	7
Zhou et al. 2023 [61]	China	2016-2021	29.3	325	234/91	HR+and HR-	T1-T4	N0-N3	1-3	8
Shao et al. 2024 [62]	China	2017-2020	I	410	293/117	HR+and HR-	T1-T4	N0-N3	2–3	8
Tuluhong et al. 2023 [63]	China	2008–2019	72.7	246	157/89	HR+and HR-	T1-T4	N0-N3	1-3	7
HR hormone receptor; n number;)	' years; NOS Ne	wcastle-Ottawa scale								

Table 1 (continued)

1	a
	S
	ø
	Š
	Ë
	Ő
	ł
	Ť
	ä
	¥
	è
	2
	8
	ž
	ŝ
	a
	Ψ
	>
	2
	er; y y
	iber; y y
	imber; y y
	number; y y
	<i>n</i> number; у у
	r; <i>n</i> number; y y
	tor; <i>n</i> number; <i>y</i> y
	eptor; <i>n</i> number; <i>y</i> y
	eceptor; <i>n</i> number; <i>y</i> y
	receptor; number; y y
	ne receptor; <i>n</i> number; <i>y</i> y
	ione receptor; <i>n</i> number; <i>y</i> y
	'mone receptor; <i>n</i> number; <i>y</i> y
	ormone receptor; n number; y y

Study Alves, et al

Shiyuan Zi

et al 2023

Zhu, et al 2023 Total (95% CI

In Li, et al 20

A- pCR in the general population

	HE Events	R2-low Total	HEF Events	2-zero Total	Weight	OR	95% CI	Odds Ratio IV, Random, 95% CI	Study or Subgroup	HE Events	R2-low Total	HER Events	2-zero Total	Weight	OR	95% CI	
2022	4	29	3	11	0.2%	0.43	[0.08: 2.33]		HR+								
2022	2	12	6	20	0.2%	0.47	[0.08: 2.81]	- _	Alves, et al 2022	4	29	3	11	0.2%	0.43	[0.08: 2.33]	
23	5	21	2	19	0.2%	2.66	10 45: 15 691		Dai, et al 2023	5	21	2	19	0.2%	2.66	[0.45: 15.69]	
24	0	2	-	2	0.0%	0.14	[0.40, 10.00]		De Moura Leite 2021	31	236	29	306	1 7%	1 44	10 84 2 471	
24	0	000	-	2000	0.0%	0.14	[0.00, 5.95] -	-	Denkert 2021	123	703	105	445	4.2%	0.69	10.51: 0.921	
eite, 2021	31	236	29	306	1.7%	1.44	[0.84; 2.47]	-	Di Cosimo et al 2022	15	272	5	47	0.5%	0.49	10 17: 1 421	
eite, 2021	25	49	124	264	1.4%	1.18	[0.64; 2.16]	-	Diurmez et al 2023	4	52	3	7	0.2%	0.11	10.02: 0.681	
21	123	703	105	445	4.2%	0.69	[0.51; 0.92]		Deugapietis et al 2023	7	80	2	22	0.2%	0.00	[0.02, 0.00]	
22	198	395	368	767	5.2%	1.09	[0.85: 1.39]		Conditional 2022	45	240	40	226	2 294	0.30	[0.25, 5.50]	
at al 2022	15	272	5	47	0.5%	0.49	10 17 1 421		Garun, et al 2023	45	47024	402	7209	2.270	0.74	[0.45, 1.15]	
t al 2022	24	63	27	62	1 094	0.80	[0 39: 1 63]		Hulyde Ll, et al 2023	905	17934	495	107	9.0%	0.74	[0.66, 0.63]	
al 2022	24	50	21	02	0.0%	0.00	[0.39, 1.03]		life, et al 2023	0	1/1	D	107	0.4%	0.61	[0.19; 1.95]	
ai 2023	4	52	3	'	0.2%	0.11	[0.02; 0.66]		Jin, et al 2023	32	397	0	11	0.7%	1.04	[0.42; 2.57]	
al 2023	3	10	3	6	0.1%	0.43	[0.05; 3.48]		Jing-Jing Li, et al 2023	8	188	2	19	0.2%	0.38	[0.07; 1.92]	
et al 2022	43	121	135	316	2.4%	0.74	[0.48; 1.14]	-	Kang, et al 2022	41	608	25	460	1.8%	1.26	[0.75; 2.10]	
et al 2022	7	80	3	33	0.3%	0.96	[0.23; 3.96]	-	Karakas, et al 2023	4	40	2	25	0.2%	1.28	[0.22; 7.55]	
2023	45	340	40	226	2.2%	0.71	[0.45; 1.13]		Miglietta, et al 2022	6	72	4	33	0.3%	0.66	[0.17; 2.51]	
al 2023	905	17934	493	7368	9.0%	0.74	10 66 0 831		Nonneville, et al 2022	30	289	47	294	2.0%	0.61	[0.37; 0.99]	
al 2023	2212	10238	2389	9794	10 4%	0.85	[0.80: 0.94]	-	Pöschke, et al 2023	86	657	36	233	2.5%	0.82	[0.54; 1.26]	
1 01 2023	2212	474	2300	107	0.40/	0.00	[0.00, 0.91]	1	Qiao, et al 2023	8	53	5	23	0.4%	0.64	[0.18; 2.22]	
23	6	1/1	6	107	0.4%	0.61	[0.19; 1.95]	-	Reinert, et al 2021	16	121	7	86	0.6%	1.72	[0.68; 4.38]	
23	22	62	77	163	1.4%	0.61	[0.34; 1.12]		Shao et al., 2024	61	222	26	77	1.6%	0.74	[0.43; 1.30]	
23	32	397	6	77	0.7%	1.04	[0.42; 2.57]	+	Shao, et al 2022	53	171	18	56	1.2%	0.95	[0.50; 1.81]	
23	36	164	13	55	1.0%	0.91	[0.44; 1.87]	+	Shi, et al 2023	9	209	4	109	0.4%	1.18	[0.36; 3.93]	
et al 2023	8	188	2	19	0.2%	0.38	[0.07: 1.92]		Shichao Zhang, et al 2023	320	2340	126	730	5.6%	0.76	[0.61; 0.95]	
et al 2023	14	51	13	25	0.5%	0.35	10 13 0 951	-	Shiyuan Zhang, 2024	11	239	11	226	0.7%	0.94	[0.40; 2.22]	
0000	44	609	25	460	1 00/	1.00	[0.76; 0.00]		Tang et al., 2022	38	509	17	116	1.3%	0.47	[0.25; 0.87]	
2022	41	000	25	400	1.0%	1.20	[0.75, 2.10]		Tarantino, et al 2024	23	323	22	210	1.3%	0.66	[0.36; 1.21]	
2022	33	140	96	358	2.2%	0.80	[0.51; 1.25]		Wang, et al 2023	5	64	2	31	0.2%	1.23	10.22: 6.721	
al 2023	4	40	2	25	0.2%	1.28	[0.22; 7.55]		Xu. et al 2023	7	208	2	81	0.2%	1.38	10.28: 6.771	
al 2023	13	35	10	30	0.5%	1.18	[0.42; 3.29]	- - -	Yang, et al 2023	3	101	2	46	0.2%	0.67	10.11: 4.17]	
23	102	292	95	254	3.3%	0.90	[0.63; 1.27]		Yi, et al 2023	0	48	1	17	0.1%	0.11	10.00: 2.921	
al 2022	6	72	4	33	0.3%	0.66	[0.17: 2.51]		Yiun Li et al 2023	51	426	28	138	1.9%	0.53	10 32 0 891	
al 2023	25	73	35	83	1.2%	0.71	10 37 1 371	-	Zhang et al 2022	5	54	3	15	0.2%	0.41	10.09 1.051	
at al 2022	20	200	47	204	2.004	0.61	[0.37: 0.00]		Zhou et al 2023	13	147	5	37	0.5%	0.62	10 21 1 871	
et al 2022	30	209	4/	294	2.0%	0.01	[0.37, 0.99]		Zhu et al 2023	142	803	60	286	3.5%	0.81	10 58 1 121	
et al 2022	17	167	151	361	3.1%	1.19	[0.82; 1.72]		Total (05% CD	2117	29127	1150	11004	46 3%	0.75	[0.70: 0.941	
al 2023	86	657	36	233	2.5%	0.82	[0.54; 1.26]	*	Hotoropopity Tau ² = - 0.000	£117	BA die 9	1/0 = 0.595	12 - 004	40.370	0.75	[0.10, 0.01]	
al 2024	137	267	105	208	3.1%	1.03	[0.72; 1.49]	+	Test for overall effect: 7 = -7.1	A /D = 0.000	104, 01 P 3	o (r = 0.03);	1 = 0.10				
023	8	53	5	23	0.4%	0.64	[0.18; 2.22]		reasing overeal effect. Z = -7,1	re (r. → 0.00)							
023	6	17	18	39	0.4%	0.64	[0.20; 2.07]	-+-	THRC								
2021	16	121	7	86	0.6%	1 72	10 68 4 381		Alizes at al 2022	2	10	0	20	0.00/	0.47	10 00. 2 041	
2021	19	46	44	7.9	1.0%	0.50	10 24 1 041	_	Arves, et al 2022	2	12	0	20	0.2%	0.4/	[0.06; 2.81]	
2024	10	40	94	70	1.070	0.30	[0.24, 1.04]		Dai, et al 2024	0	3	1	2	0.0%	0.14	[0.00; 5.95]	
2024	61	222	26	11	1.0%	0.74	[0.43, 1.30]		De Moura Leite, 2021	25	49	124	264	1.4%	1.18	[0.04; 2.16]	
2024	38	71	20	40	0.9%	1.15	[0.53; 2.50]	-	Denkert, 2022	198	395	368	767	5.2%	1.09	[0.85; 1.39]	
2022	53	171	18	56	1.2%	0.95	[0.50; 1.81]	+	Di Cosimo, et al 2022	24	63	27	62	1.0%	0.80	[0.39; 1.63]	
022	29	55	16	32	0.7%	1.12	[0.47; 2.67]	+-	Djurmez, et al 2023	3	10	3	6	0.1%	0.43	[0.05; 3.48]	
23	9	209	4	109	0.4%	1.18	[0.36; 3.93]	—	Domergue, et al 2022	43	121	135	316	2.4%	0.74	[0.48; 1.14]	
23	11	40	19	72	0.7%	1.06	[0.44: 2.52]		Hulyue Li, et al 2023	2212	10238	2388	9791	10.4%	0.85	[0.80; 0.91]	
ing at al 2023	320	2340	126	730	5 6%	0.76	10 61: 0 951	-	llie, et al 2023	22	62	77	163	1.4%	0.61	[0.34; 1.12]	
2024	11	2340	14	226	0.70	0.04	[0.01, 0.00]		Jin, et al 2023	36	164	13	55	1.0%	0.91	[0.44; 1.87]	
ang, 2024	11	239	11	226	0.7%	0.94	[0.40; 2.22]		Jing-Jing Li, et al 2023	14	51	13	25	0.5%	0.35	[0.13; 0.95]	
ang, 2024	5	40	33	148	0.5%	0.50	[0.18; 1.37]		Kang, et al 2022	33	146	96	358	2.2%	0.80	[0.51; 1.25]	
2022	38	509	17	116	1.3%	0.47	[0.25; 0.87]		Karakas, et al 2023	13	35	10	30	0.5%	1.18	[0.42; 3.29]	
2022	43	176	21	104	1.4%	1.28	[0.71; 2.30]		Ma, et al 2023	102	292	95	254	3.3%	0.90	[0.63; 1.27]	
al 2024	23	323	22	210	1.3%	0.66	[0.36: 1.21]		Miglietta, et al 2023	25	73	35	83	1.2%	0.71	[0.37; 1.37]	
al 2024	57	168	118	200	2.8%	0.75	10 50 1 111		Nonneville, et al 2022	77	167	151	361	3.1%	1.19	[0.82; 1.72]	
000	35	100	110	250	4.40/	0.75	[0.00, 1.11]	1	Pöschke, et al 2024	137	267	105	208	3.1%	1.03	[0.72: 1.49]	
022	35	82	25	5/	1.1%	0.95	[0.46, 1.89]		Qiao, et al 2023	6	17	18	39	0.4%	0.64	10.20: 2.071	
2023	5	64	2	31	0.2%	1.23	[0.22; 6.72]		Reinert et al 2021	18	46	44	78	1.0%	0.50	10 24: 1 041	
2023	7	29	7	24	0.4%	0.77	[0.23; 2.63]	-+-	Shao et al 2024	30	74	20	40	0.9%	1 15	10 53 2 501	
23	7	208	2	81	0.2%	1.38	[0.28: 6.77]		Chae at al 2022	30	11	20	40	0.7%	1.10	[0.00, 2.00]	

Fig. 2 Forest plot of adjusted analyses for association between HER2 expression and pathological complete response. a pCR of all studies; b pCR of HR + subgroups; c pCR of TNBC subgroups

HER2-zero

10 100

funnel plot demonstrated a homogeneous distribution with a low risk of biases among most studies, except for Djumenez et al. Additionally, Egger's test for this outcome showed a *p*-value of 0.395 and a bias estimate of -0.14(SE = 0.17). For the univariate analysis of OS and DFS, the groups displayed minimal dispersion in the funnel plot, except for three studies that showed more extreme dispersion in both groups. Egger's test for OS indicated a *p*-value of 0.294 and a bias estimate of -0.61 (SE = 0.55), while for DFS, it showed a p-value of 0.263 and a bias estimate of -1.30 (SE = 1.1) (Fig. 4B). In the multivariate analysis, seven studies in the OS group and five studies in the DFS group were outside the funnel plot, indicating greater dispersion and potential bias. Egger's test indicated a *p*-value of 0.503 and a bias estimate of -0.34

12 38 60 220 803

5523 4165

26183 100.0% 0.84 [0.78; 0.9

0.38 0.67 0.12 0.11 1.64 0.53 1.09 0.41 0.62 0.62 1.49 1.52 0.81

.01

[0.14; 19.39] [0.32; 0.89] [0.73; 1.62] [0.09; 1.95] [0.09; 4.22] [0.21; 1.87] [0.68; 3.28] [0.96; 2.40] [0.58; 1.13]

0.01 0.1 HER2-low

0.2% 0.1% 0.1% 0.1% 1.9% 2.8% 0.2% 0.2% 0.5% 0.9% 2.2% 3.5%

(SE = 0.50) for OS, and a *p*-value of 0.636 with a bias estimate of -0.32 (SE = 0.67) for DFS. The detailed funnel plot analysis of the main outcomes can be found in Supplementary Fig. S4.

0.7% 0.5% 1.4% 2.8% 1.1% 0.4% 0.6% 0.1% 2.8% 0.2% 0.9% 2.2% 1.06 0.50 1.28 0.75 0.95 0.77 0.38 0.12 1.64 1.09 0.62 1.49 1.52 [0.44; [0.18; [0.71; [0.50; [0.48; [0.23; [0.15; [0.01;

[0.14; [0.73] [0.09] [0.68] [0.96]

0.01 HE

0.1

10 HE

Quality assessment

80 5

es: Chi

5523 41656 5264 = 79.19, df = 67 (P = 0.15); I

= 9.25, df = 1 (P < 0.01)

The individual assessment of each observational study included in the meta-analysis is depicted in Table S5, Supplementary Material. The quality of the included studies was assessed using the Newcastle-Ottawa Scale (NOS). Out of the 34 studies evaluated, 33 scored between 7 and 9 points, indicating high quality. One study, conducted by Wang et al., scored 6 points due to lower marks in ascertainment of exposure, main factor, and additional factor (Supplementary Table 4).

B- pCR according to BC subtype

Outcome	Univariate			Multivariate	*	
	HR	95% CI	<i>p</i> -value	HR	95% CI	<i>p</i> -value
OS ALL**	0.7984	0.6253-1.0194	0.071	0.8061	0.6633-0.9795	0.03
OS HR +	0.9193	0.7506-1.1258	0.416	0.8255	0.7790-0.8748	< 0.001
OS TNBC	0.9869	0.7323-1.3300	0.931	0.9447	0.6356-1.4039	0.778
DFS ALL**	0.889	0.7106-1.1122	0.303	0.8317	0.7036-0.9832	0.031
DFS HR +	1.0047	0.8232-1.2262	0.963	0.8751	0.7451-1.0277	0.104
DFS TNBC	1.2086	0.6465-2.2592	0.553	0.9468	0.6758-1.3265	0.751

Table 2 Analysis of DFS and OS

CI confidence interval; DFS disease-free survival; HR hazard ratio; TNBC triple-negative breast cancer

* Adjusted by HER2 status, age, T stage, N stage, histopathological type, grading, and hormone receptor status

** Complete OS and DFS data available in supplementary Figs. S2 and S3

Discussion

The HER2-low category has recently gained significant attention in clinical research and practice guidelines. In 2023, the European Society for Medical Oncology (ESMO) issued an expert consensus on the definition, diagnosis, and management of HER2-low breast cancer [7, 64]. Evidence from clinical trials suggests that antibody-drug conjugates may be clinically effective in tumors with low to moderate HER2 expression [65, 66]. Our meta-analysis provides insights into this potential marker in the analysis of pathological complete response (pCR) among patients with early-stage HER2low and HER2-zero breast cancer undergoing neoadjuvant chemotherapy, and our data reinforce findings from previous meta-analyses [67, 68]. This analysis, which includes 70,104 patients from 38 studies, demonstrates that HER2-zero status is associated with superior pathological response rates, but HER2-low as well as improved overall survival and disease-free survival.

HER2-low status is more frequent in HR + patients, and HER2-low staining rates increase as HR increases. Regarding clinicopathological characteristics, in HRnegative tumors, HER2-low, when compared to HER2zero, was significantly associated with low-grade tumors (35% vs. 18%) and in tumors with apocrine IHC markers (57% vs. 36%). Thus, these results could indicate that, in HER2-negative tumors, low HER2 expression is more often associated with favorable prognostic characteristics [69, 70]. The findings of this meta-analysis provide grounds to discuss whether HER2-zero could be a potential predictor of pathological complete response to neoadjuvant treatment in HR+and could be substantially important for informing clinical therapies-although HER2-low tumors had better survival outcomes. Our study can show the variation from HER2-low to treatment response for TNBC, however, it is important to emphasize that our data only support the current standard treatment for early TNBC, which is cytotoxic chemotherapy.

The primary outcome of interest, pCR, demonstrated a significant association favoring HER2-zero phenotype across all included studies. This finding was consistent across subgroups stratified by hormone receptor status, indicating that HER2-zero status correlates with higher rates of pCR, particularly pronounced in hormone receptor-positive breast cancer. The analysis revealed an odds ratio (OR) of 0.75 (95% CI 0.70–0.81) for HR+subgroups and 0.91 (95% CI 0.83–1.0) for triple-negative breast cancer (TNBC) subgroups. This rate difference has previously been described among patients undergoing neoadjuvant chemotherapy in Germany, where HER2-low status was associated with lower pCR for HR+, but not for HR-negative patients [19].

Previous studies have demonstrated that triple-negative breast cancer (TNBC) achieves higher pathological complete response (pCR) rates following neoadjuvant chemotherapy compared to hormone receptor-positive (HR+) breast cancer [71, 72]. The biological basis for this disparity is linked to distinct immunoreactive tumor microenvironments between the two cancer types. Specifically, TNBC tumors exhibit elevated levels of PD-L1+cells within both the tumor and stroma, as well as higher infiltration scores of memory B-cells, activated memory CD4+T-cells, follicular helper T-cells, and M0 and M1 macrophages, in comparison to luminal breast cancer subtypes [73].

For TNBC, neoadjuvant therapy is the standard practice [74]. In contrast, the optimal timing of neoadjuvant chemotherapy for HR+breast cancer is uncertain. This question arises in part from a concern that starting treatment with hormonal therapy may offer advantages such as reduced risk and lower toxicity. However, our results indicate that women with HR+early breast cancer experience significant benefits in terms of pathological

Fig. 3 Assessment of heterogeneity between studies; A GOSH plot analysis; B Drapery plot analysis

complete response, with an odds ratio of 0.088 in a cohort of 40,121 women analyzed. Within this group, patients with HER2-zero status demonstrated more pronounced benefits from pathological complete response compared to those with the HER2-low phenotype (OR 0.84; 95% CI 0.78–0.90; p<0.000005; Fig. 2a). Consequently, HER2-zero could be a secondary prognostic marker in HR+tumors, guiding the decision for cytotoxic chemotherapy and being a valuable tool for personalized treatment strategies.

A- Funnel plot for pCR

B- Meta-regression for pCR in HER2-low

Fig. 4 Assessment of publication bias; A Funnel plot analysis; B Meta-regression analysis

Concerning overall survival, the analysis of all patients (without stratification by TNBC or HR+) revealed statistical significance only in the multivariate analysis, with a hazard ratio (HR) of 0.8061 (p=0.03). When evaluating the subtypes separately, no statistical significance was detected for this outcome in women with TNBC in either the univariate or multivariate analyses. In contrast, for the HR + phenotype, the multivariate analysis demonstrated significance, with an HR of 0.8255 and a *p*-value of < 0.001, favoring HER2-low expression over HER2zero. Overall survival is a critical endpoint in assessing the effectiveness of treatments, particularly in early breast cancer. However, it should be interpreted with caution due to the prolonged progression from earlystage tumor to metastatic disease, which can often take several years [75]. Shorter follow-up durations may lead to the erroneous conclusion that a treatment does not confer survival benefits, thereby resulting in potentially misleading interpretations.

Regarding disease-free survival, significance was found only in the overall group, with a hazard ratio of 0.8317 and a *p*-value of 0.031 in the multivariate analysis, favoring the HER2-low subtype compared to HER2-zero. A study conducted in Germany, involving 2310 women with HER2-non-amplified primary breast cancer treated with neoadjuvant therapy, reported similar findings to ours. They observed significance in the disease-free survival outcome (3-year rate) favoring the HER2-low subgroup, both in the overall group and in the subset of patients with hormone receptor-negative breast cancer [19]. Furthermore, an exploratory survival analysis with approximately 10 months of median follow-up in 5235 HER2-negative patients supports most of our DFS findings. This study also did not find statistical significance when analyzing HR-positive and triple-negative breast cancer tumors separately, but it did find statistical significance in DFS for the overall group [8].

Given the pCR outcomes, our findings have significant clinical implications that support the use of HER2 as a prognostic biomarker, potentially justifying ADC therapy, particularly for HR+HER2-zero women. Additionally, we found that the group HR+, with the highest pCR, also exhibited superior overall survival and disease-free survival in a multivariate analysis, favoring the HER2-low phenotype. Prior studies have shown that pCR is a critical prognostic indicator, consistently associated with positive overall outcomes [76].

Conventionally pCR has been considered a prognostic indicator of better outcomes in breast cancer overall. However, our results reveal an interesting and distinct finding: despite the pCR rate observed in the HER2-zero group, the HER2-low group demonstrates significantly better survival. This suggests that pCR may not be the sole determinant or prognostic marker of relevance in the neoadjuvant setting. Moreover, biomarkers such as liquid biopsy, tumor-infiltrating lymphocytes, and other genetic markers could play a critical role in evaluating treatment response in a more integrated manner, as pCR alone may not fully predict survival outcomes [77, 78]. Additionally, population and ethnic differences may account for the heterogeneity observed and could potentially compromise the generalizability of our findings, despite the large population included in this meta-analysis. Furthermore, the observational nature of the included studies could limit the generalizability and statistical power of the combined analysis, as well as increase the risk of bias.

Recent advances in understanding HER2-zero status as a prognostic marker for patients undergoing neoadjuvant

treatment have highlighted its substantial importance in treatment planning. The DESTINY-Breast06 study made significant contributions to the field by exploring HER2-low/ultralow status, particularly demonstrating that treatment with trastuzumab deruxtecan provided significant benefits in 866 patients with metastatic breast cancer (713 HER2-low and 153 HER2-ultralow), with improved PFS (HR 0.62; P < 0.001), showing consistent results in the HER2-ultralow population [79]. These findings suggest that this treatment option should be considered in the development of personalized clinical protocols, and HER2 classification could guide the individualization of breast cancer treatment in the neoadjuvant setting.

For the limitations of our study, it is essential to acknowledge that our meta-analysis is primarily composed of observational studies. Also, we identified significant heterogeneity in the disease-free survival outcomes for TNBC and the overall group, in both univariate and multivariate analyses. Similarly, we observed considerable heterogeneity in the overall survival outcomes across all univariate and multivariate analyses. Nevertheless, sensitivity analyses and meta-regression indicated that our data follow a linear trend, suggesting a closer alignment with the true effect and a high level of reliability in the association between the HER2-zero phenotype and pathological complete response. We utilized leaveone-out sensitivity methods and Egger's test to identify potential studies contributing to the observed heterogeneity (Supplementary Fig. 1). Despite these limitations, they do not undermine the robust conclusions of our article, which assert that HER2 is an emerging biomarker for guiding neoadjuvant treatment in women with earlystage breast cancer.

Conclusion

In conclusion, our meta-analysis supports that HER2zero status is associated with a significantly higher pathologic complete response (pCR) rate compared to HER2-low status in early-stage breast cancer, but HER2low status presented longer survival outcomes such as DFS and OS. These findings indicate that HER2-zero status may serve as a relevant prognostic factor in the planning of neoadjuvant treatment for these patients and should be considered during treatment; however, longer follow-up is required for an accurate assessment of these oncological outcomes.

Abbreviations

ADC	Antibody–drug conjugates
BC	Breast cancer
CI	Confidence interval
DCR	Disease control rate
GOSH	Graphical display of study heterogeneity
HR	Hazard ratio

HR+	Hormone receptor positive
12	l squared statistic (measure of heterogeneity)
IHC	Immunohistochemistry
ISH	In situ hybridization
MeSH	Medical subject headings
NAC	Neoadjuvant chemotherapy
NOS	Newcastle–Ottawa scale
OR	Odds ratio
OS	Overall survival
pCR	Pathological complete response
PRISMA	Preferred reporting items for systematic reviews and
	meta-analysis
PROSPERO	International prospective register of systematic reviews
RR	Risk ratio
SE	Standart error
SYD985	Trastuzumab duocarmazine
T-DXd	Trastuzumab deruxecan
TNBC	Triple-negative breast cancer
USA	United States of America

Supplementary Information

The online version contains supplementary material available at https://doi. org/10.1186/s13058-025-01989-9.

Supplementary material 1.

Acknowledgements

We thank the Federal University of Pará (UFPA); the Center for Research Oncology (NPO/UFPA), and thanks to the Pró-Reitoria de Pesquisa e Pós-Graduação da UFPA (PROPESP) for paying for the article.

Author contributions

Theoretical conceptualization, F.C.A.M.; idealization, F.C.A.M.; literature searching, C.H.D.C.R., F.D.D.L.P., and F.C.A.M.; investigation, C.H.D.C.R and F.D.D.L.P; data curation, C.H.D.C.R., F.D.D.L.P, and F.C.A.M.; statistical analysis, F.C.A.M., C.H.D.C.R., and F.D.D.L.P; contextualization, F.C.A.M.; methodology, F.C.A.M.; elaboration of draft, F.C.A.M., C.H.D.C.R., and F.D.D.L.P; preparation of the original writing, F.C.A.M., C.H.D.C.R., and F.D.D.L.P; adjustments rules and preparation of the original writing, F.C.A.M., C.H.D.C.R., and F.D.D.L.P; adjustments rules and preparation of the original script, F.C.A.M., C.H.D.C.R., and F.D.D.L.P; review, J.R.C., A.P.B.S., D.D.F.A.A., M.B.G.I., M.C.F.M. and R.M.R.B. All authors have read and agreed to the published version of the manuscript.

Funding

This research has not been funded.

Availability of data and materials

All data generated and/or analysed during this study are included in this published article [and its supplementary information files]. Requests for materials should be addressed to F.C.A.M.; francisco.cezar2205@gmail.com.

Declarations

Ethics approval and consent to participate Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Author details

¹Federal University of Pará, R. Augusto Corrêa, Guamá, nº01, Belem, PA 66075-110, Brazil. ²University of São Paulo – USP, São Paulo 01246-903, Brazil. ³Ophir Loyola Hospital, Belém, PA 66063-240, Brazil. ⁴Mackenzie Evangelical University Hospital, Curitiba, Paraná 80730-150, Brazil. Received: 27 September 2024 Accepted: 27 February 2025 Published online: 15 March 2025

References

- Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–49.
- Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science. 1987;235:177–82.
- Lovekin C, Ellis IO, Locker A, Robertson JF, Bell J, Nicholson R, et al. c-erbB-2 oncoprotein expression in primary and advanced breast cancer. Br J Cancer. 1991;63:439–43.
- Carter P, Presta L, Gorman CM, Ridgway JB, Henner D, Wong WL, et al. Humanization of an anti-p185HER2 antibody for human cancer therapy. Proc Natl Acad Sci U S A. 1992;89:4285–9.
- Hudis CA. Trastuzumab–mechanism of action and use in clinical practice. N Engl J Med. 2007;357:39–51.
- Wolff AC, Hammond MEH, Allison KH, Harvey BE, Mangu PB, Bartlett JMS, et al. Human epidermal growth factor receptor 2 testing in breast cancer: american society of clinical oncology/college of american pathologists clinical practice guideline focused update. J Clin Oncol Off J Am Soc Clin Oncol. 2018;36:2105–22.
- Tarantino P, Viale G, Press MF, Hu X, Penault-Llorca F, Bardia A, et al. ESMO expert consensus statements (ECS) on the definition, diagnosis, and management of HER2-low breast cancer. Ann Oncol Off J Eur Soc Med Oncol. 2023;34:645–59.
- Tarantino P, Hamilton E, Tolaney SM, Cortes J, Morganti S, Ferraro E, et al. HER2-low breast cancer: pathological and clinical landscape. J Clin Oncol Off J Am Soc Clin Oncol. 2020;38:1951–62.
- Tarantino P, Jin Q, Tayob N, Jeselsohn RM, Schnitt SJ, Vincuilla J, et al. Prognostic and biologic significance of ERBB2-low expression in early-stage breast cancer. JAMA Oncol. 2022;8:1177–83.
- Harbeck N, Beckmann MW, Rody A, Schneeweiss A, Müller V, Fehm T, et al. HER2 dimerization inhibitor pertuzumab-mode of action and clinical data in breast cancer. Breast Care Basel Switz. 2013;8:49–55.
- Franklin MC, Carey KD, Vajdos FF, Leahy DJ, de Vos AM, Sliwkowski MX. Insights into ErbB signaling from the structure of the ErbB2-pertuzumab complex. Cancer Cell. 2004;5:317–28.
- Xu Z, Guo D, Jiang Z, Tong R, Jiang P, Bai L, et al. Novel HER2-targeting antibody-drug conjugates of trastuzumab beyond T-DM1 in breast cancer: trastuzumab deruxtecan(DS-8201a) and (Vic-)trastuzumab duocarmazine (SYD985). Eur J Med Chem. 2019;183:111682.
- Drago JZ, Modi S, Chandarlapaty S. Unlocking the potential of antibody– drug conjugates for cancer therapy. Nat Rev Clin Oncol. 2021;18:327–44.
- 14. Xiao T, Ali S, Mata DGMM, Lohmann AE, Blanchette PS. Antibody-drug conjugates in breast cancer: ascent to destiny and beyond-a 2023 review. Curr Oncol Tor Ont. 2023;30:6447–61.
- Corti C, Giugliano F, Nicolò E, Tarantino P, Criscitiello C, Curigliano G. HER2-low breast cancer: a new subtype? Curr Treat Options Oncol. 2023;24:468–78.
- Zhang H, Katerji H, Turner BM, Hicks DG. HER2-low breast cancers. Am J Clin Pathol. 2022;157:328–36.
- Yang M, Sun J, Liu L, Kong X, Lin D, Zhou H, et al. Clinicopathological characteristics of HER2-low breast cancer: a retrospective study. Sci Rep. 2023;13:12382.
- Ilie SM, Briot N, Constantin G, Roussot N, Ilie A, Bergeron A, et al. Pathologic complete response and survival in HER2-low and HER2-zero early breast cancer treated with neoadjuvant chemotherapy. Breast Cancer. 2023;30:997–1007.
- Denkert C, Seither F, Schneeweiss A, Link T, Blohmer J-U, Just M, et al. Clinical and molecular characteristics of HER2-low-positive breast cancer: pooled analysis of individual patient data from four prospective, neoadjuvant clinical trials. Lancet Oncol. 2021;22:1151–61.
- Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372:n71.

- Cochrane handbook for systematic reviews of interventions [Internet]. [cited 2024 Jul 25]. Available from: https://training.cochrane.org/handb ook
- Tolaney SM, Garrett-Mayer E, White J, Blinder VS, Foster JC, Amiri-Kordestani L, et al. Updated standardized definitions for efficacy end points (STEEP) in adjuvant breast cancer clinical trials: STEEP version 2.0. J Clin Oncol. 2021;39:2720–31.
- Litton JK, Regan MM, Pusztai L, Rugo HS, Tolaney SM, Garrett-Mayer E, et al. Standardized definitions for efficacy end points in neoadjuvant breast cancer clinical trials: NeoSTEEP. J Clin Oncol. 2023;41:4433–42.
- Wells G, Shea B, O'Connell D, Peterson je, Welch V, Losos M, et al. The Newcastle–Ottawa scale (NOS) for assessing the quality of non-randomized studies in meta-analysis. 2000.
- Mathur MB, VanderWeele TJ. Methods to address confounding and other biases in meta-analyses: review and recommendations. Annu Rev Public Health. 2022;43:19–35.
- Jackson D, Bowden J, Baker R. How does the DerSimonian and Laird procedure for random effects meta-analysis compare with its more efficient but harder to compute counterparts? J Stat Plan Inference. 2010;140:961–70.
- Kepes S, Wang W, Cortina JM. Assessing publication bias: a 7-step user's guide with best-practice recommendations. J Bus Psychol. 2023;38:957–82.
- de Moura LL, Cesca MG, Tavares MC, Santana DM, Saldanha EF, Guimarães PT, et al. HER2-low status and response to neoadjuvant chemotherapy in HER2 negative early breast cancer. Breast Cancer Res Treat. 2021;190:155–63.
- Kang S, Lee SH, Lee HJ, Jeong H, Jeong JH, Kim JE, et al. Pathological complete response, long-term outcomes, and recurrence patterns in HER2-low versus HER2-zero breast cancer after neoadjuvant chemotherapy. Eur J Cancer. 1990;2022(176):30–40.
- Li J-J, Yu Y, Ge J. HER2-low-positive and response to NACT and prognosis in HER2-negative non-metastatic BC. Breast Cancer Tokyo Jpn. 2023;30:364–78.
- Qiao W, Guo W, Liu Q, Guo X, Deng M. Pathological complete response and prognosis after neoadjuvant chemotherapy in patients with HER2low breast cancer. Ann Diagn Pathol. 2023;64:152125–152125.
- Shao Y, Yu Y, Luo Z, Guan H, Zhu F, He Y, et al. Clinical, pathological complete response, and prognosis characteristics of HER2-low breast cancer in the neoadjuvant chemotherapy setting: a retrospective analysis. Ann Surg Oncol. 2022;29:8026–34.
- Xu W, Jiang Y, Xu L, Li C, Wang J, Liu Z, et al. HER2-low status may predict poor neoadjuvant chemotherapy response in HR-negative breast cancer: a real-world multicenter study. Jpn J Clin Oncol. 2023;53:463–71.
- 34. Garufi G, Carbognin L, Mastrantoni L, Maliziola N, Monte ED, Arcuri G, et al. 138P activity and efficacy of neoadjuvant chemotherapy (NACT) in luminal-HER2-negative early breast cancer (EBC) according to HER2 score (low vs score 0): A retrospective study. ESMO Open [Internet]. 2023 [cited 2024 Feb 13];8. Available from: https://www.esmoopen. com/article/S2059-7029(23)00703-2/fulltext
- 35. Pöschke P, Fasching PA, Adler W, Rübner M, Beckmann MW, Hack CC, et al. Clinical characteristics and prognosis of HER2-0 and HER2-lowpositive breast cancer patients: real-world data from patients treated with neoadjuvant chemotherapy. Cancers. 2023;15:4678.
- Yang L, Liu Y, Han D, Fu S, Guo S, Bao L, et al. Clinical genetic features and neoadjuvant chemotherapy response in HER2-low breast cancers: a retrospective. Multicent Cohort Study Ann Surg Oncol. 2023;30:5653–62.
- Dai L, Huang Q, Guo R, Zhu K, Tang Y, Chen D, et al. Clinicopathologic features and prognosis of female early breast cancer with HER2 low expression: a propensity score matched analysis. Clin Med Insights Oncol. 2023;17:11795549231202464.
- Zhang G, Ren C, Li C, Wang Y, Chen B, Wen L, et al. Distinct clinical and somatic mutational features of breast tumors with high-, low-, or nonexpressing human epidermal growth factor receptor 2 status. BMC Med. 2022;20:142.
- Karakas C, Tyburski H, Turner BM, Weiss A, Akkipeddi SMK, Dhakal A, et al. HER2 categorical changes after neoadjuvant chemotherapy: a study of 192 matched breast cancers with the inclusion of HER2-low category. Hum Pathol. 2023;142:34–41.

- Ma Y, Jiao D, Zhang J, Lv M, Chen X, Liu Z. HER2-low status was associated with better breast cancer-specific survival in early-stage triple-negative breast cancer. Oncologist. 2023;29:oyad275.
- Miglietta F, Griguolo G, Bottosso M, Giarratano T, Lo Mele M, Fassan M, et al. HER2-low-positive breast cancer: evolution from primary tumor to residual disease after neoadjuvant treatment. Npj Breast Cancer. 2022;8:1–7.
- 42. Alves FR, Gil L, Vasconcelos de Matos L, Baleiras A, Vasques C, Neves MT, et al. Impact of human epidermal growth factor receptor 2 (HER2) low status in response to neoadjuvant chemotherapy in early breast cancer. Cureus. 2022;14:e22330.
- Zhu S, Lu Y, Fei X, Shen K, Chen X. Pathological complete response, category change, and prognostic significance of HER2-low breast cancer receiving neoadjuvant treatment: a multicenter analysis of 2489 cases. Br J Cancer. 2023;129:1274–83.
- Wang W, Zhu T, Chen H, Yao Y. The impact of HER2-low status on response to neoadjuvant chemotherapy in clinically HER2-negative breast cancer. Clin Transl Oncol. 2023;25:1673–81.
- 45. Toss A, Venturelli M, Civallero M, Piombino C, Domati F, Barbolini M, et al. Predictive factors for relapse in triple-negative breast cancer patients without pathological complete response after neoadjuvant chemotherapy. Front Oncol. 2022. https://doi.org/10.3389/fonc.2022.1016295/full.
- Shi W, Wan X, Wang Y, He J, Huang X, Xu Y, et al. Nanoparticle albuminbound paclitaxel-based neoadjuvant regimen: a promising treatment option for HER2-low-positive breast cancer. Nanomed Nanotechnol Biol Med. 2023;49:102666.
- 47. de Nonneville A, Houvenaeghel G, Cohen M, Sabiani L, Bannier M, Viret F, et al. Pathological complete response rate and disease-free survival after neoadjuvant chemotherapy in patients with HER2-low and HER2-0 breast cancers. Eur J Cancer. 2022;176:181–8.
- Li H, Plichta JK, Li K, Jin Y, Thomas SM, Ma F, et al. Impact of HER2-low status for patients with early-stage breast cancer and non-pCR after neoadjuvant chemotherapy: a National Cancer Database Analysis. Breast Cancer Res Treat. 2024;204:89–105.
- Domergue C, Martin E, Lemarié C, Jézéquel P, Frenel J-S, Augereau P, et al. Impact of HER2 status on pathological response after neoadjuvant chemotherapy in early triple-negative breast cancer. Cancers. 2022;14:2509.
- Di Cosimo S, La Rocca E, Ljevar S, De Santis MC, Bini M, Cappelletti V, et al. Moving HER2-low breast cancer predictive and prognostic data from clinical trials into the real world. Front Mol Biosci. 2022. https://doi.org/10. 3389/fmolb.2022.996434.
- Zhang S, Liu Y, Liu X, Liu Y, Zhang J. Prognoses of patients with hormone receptor-positive and human epidermal growth factor receptor 2-negative breast cancer receiving neoadjuvant chemotherapy before surgery: a retrospective analysis. Cancers. 2023;15:1157.
- Yi X, Hu S, Ma M, Huang D, Zhang Y. Effect of HER2-low expression on neoadjuvant efficacy in operable breast cancer. Clin Transl Oncol. 2023. https://doi.org/10.1007/s12094-023-03318-y.
- Zhang S, Yu X, Xiu Y, Qiao K, Jiang C, Huang Y. Clinicopathological characteristics of breast cancer patients with HER-2 low expression receiving neoadjuvant therapy. Oncology. 2023;102:122–30.
- Reinert T, Sartori GP, Souza AA, Pellegrini R, Rosa ML, Rossatto N, et al. Abstract PS4–22: prevalence of HER2-low and HER2-zero subgroups and correlation with response to neoadjuvant chemotherapy (NACT) in patients with HER2-negative breast cancer. Cancer Res. 2021;81:PS4-22.
- Li Y, Maimaitiaili A, Qu F, Li G, Shi B, Wang Y, et al. Effect of HER2-lowpositive status on neoadjuvant chemotherapy and survival outcome of breast cancer: a 10-year dual-center retrospective study. Am J Cancer Res. 2023;13:3571–81.
- Jin Y, Lan A, Dai Y, Jiang L, Liu S. Comparison of the pCR rate and DFS among breast cancer patients with different hormone receptor and HER2 statuses. Breast Cancer Targets Ther. 2023;15:327–35.
- Douganiotis G, Kontovinis L, Markopoulou E, Ainali A, Zarampoukas T, Natsiopoulos I, et al. Prognostic significance of low HER2 expression in patients with early hormone receptor positive breast cancer. Cancer Diagn Progn. 2022;2:316–23.
- Djurmez O, Calamac M, Stanic N, Dimitrijevic M, Vukosavljevic J, Serovic K, et al. Pathological complete response after neoadjuvant chemotherapy in patients with HER2 low and HER2 0 early breast cancer (eBC) experience from Institute for Oncology and Radiology of Serbia (IORS). Breast. 2023;68:S64–S64.

- Tarantino P, Ajari O, Graham N, Vincuilla J, Parker T, Hughes ME, et al. Evolution of HER2 expression between pre-treatment biopsy and residual disease after neoadjuvant therapy for breast cancer. Eur J Cancer Oxf Engl. 1990;2024(201):113920.
- Tang L, Li Z, Shu X, Xu Y, Liu S. Efficacy evaluation of neoadjuvant chemotherapy in patients with HER2-low expression breast cancer: a real-world retrospective study. Front Oncol. 2022. https://doi.org/10. 3389/fonc.2022.999716/full.
- Zhou S, Liu T, Kuang X, Zhen T, Shi H, Lin Y, et al. Comparison of clinicopathological characteristics and response to neoadjuvant chemotherapy between HER2-low and HER2-zero breast cancer. Breast Edinb Scotl. 2023;67:1–7.
- 62. Shao Y, Guan H, Luo Z, Yu Y, He Y, Chen Q, et al. Clinicopathological characteristics and value of HER2-low expression evolution in breast cancer receiving neoadjuvant chemotherapy. Breast Edinb Scotl. 2024;73:103666.
- 63. Tuluhong D, Li X, Gao H, Zhu Y, Li Q, Wang S. Molecular characteristics and prognosis of breast cancer patients with different level of HER2 positivity after adjuvant and neoadjuvant chemotherapy. Eur J Cancer Prev Off J Eur Cancer Prev Organ ECP. 2023;32:377–87.
- Abou Khalil M, Habibian L, Martin C, Semaan K, Khaddage A, El Kassis N, et al. Landscape of HER2-low breast cancer: Insights from a six-year study on incidence and clinicopathological characteristics. J Clin Oncol. 2024;42:e13148–e13148.
- Modi S, Park H, Murthy RK, Iwata H, Tamura K, Tsurutani J, et al. Antitumor activity and safety of trastuzumab deruxtecan in patients with HER2-low-expressing advanced breast cancer: results from a phase Ib study. J Clin Oncol Off J Am Soc Clin Oncol. 2020;38:1887–96.
- 66. Takegawa N, Tsurutani J, Kawakami H, Yonesaka K, Kato R, Haratani K, et al. [fam-] trastuzumab deruxtecan, antitumor activity is dependent on HER2 expression level rather than on HER2 amplification. Int J Cancer. 2019;145:3414–24.
- 67. Xia L-Y, Cao X-C, Yu Y. Survival outcomes in HER2-low versus HER2-zero breast cancer after neoadjuvant chemotherapy: a meta-analysis. World J Surg Oncol. 2024;22:106.
- Liu M, Xiang Q, Dai F, Yuan Y, Wu Z, Xiang T. Comparison of the pathological complete response rate and survival between HER2-low and HER2-Zero breast cancer in neoadjuvant chemotherapy setting: a systematic review and meta-analysis. Clin Breast Cancer. 2024;24:575-584.e1.
- Shirman Y, Lubovsky S, Shai A. HER2-low breast cancer: current landscape and future prospects. Breast Cancer Targets Ther. 2023;15:605–16.
- Zhang H, Katerji H, Turner BM, Audeh W, Hicks DG. HER2-low breast cancers: incidence, HER2 staining patterns, clinicopathologic features, MammaPrint and BluePrint genomic profiles. Mod Pathol. 2022;35:1075–82.
- Li XB, Krishnamurti U, Bhattarai S, Klimov S, Reid MD, O'Regan R, et al. Biomarkers predicting pathologic complete response to neoadjuvant chemotherapy in breast cancer. Am J Clin Pathol. 2016;145:871–8.
- Haque W, Verma V, Hatch S, Suzanne Klimberg V, Brian Butler E, Teh BS. Response rates and pathologic complete response by breast cancer molecular subtype following neoadjuvant chemotherapy. Breast Cancer Res Treat. 2018;170:559–67.
- Han M, Li J, Wu S, Wu C, Yu Y, Liu Y. Comparison of the tumor immune microenvironment phenotypes in different breast cancers after neoadjuvant therapy. Cancer Med. 2023;12:2906–17.
- Chaudhary LN, Wilkinson KH, Kong A. Triple-negative breast cancer: who should receive neoadjuvant chemotherapy? Surg Oncol Clin N Am. 2018;27:141–53.
- 75. Hurvitz SA. Evolving options for the treatment of metastatic breast cancer: progression-free survival as an endpoint. Cancer Treat Rev. 2011;37:495–504.
- Nekljudova V, Loibl S, von Minckwitz G, Schneeweiss A, Glück S, Crane R, et al. Trial-level prediction of long-term outcome based on pathologic complete response (pCR) after neoadjuvant chemotherapy for earlystage breast cancer (EBC). Contemp Clin Trials. 2018;71:194–8.
- 77. de Moraes FCA, Souza MEC, Sano VKT, Moraes RA, Melo AC. Association of tumor-infiltrating lymphocytes with clinical outcomes in patients with triple-negative breast cancer receiving neoadjuvant chemotherapy: a systematic review and meta-analysis. Clin Transl Oncol Off Publ Fed Span Oncol Soc Natl Cancer Inst Mex. 2024.

- Zaikova E, Cheng BYC, Cerda V, Kong E, Lai D, Lum A, et al. Circulating tumour mutation detection in triple-negative breast cancer as an adjunct to tissue response assessment. NPJ Breast Cancer. 2024;10:3.
- 79. Bardia A, Hu X, Dent R, Yonemori K, Barrios CH, O'Shaughnessy JA, et al. Trastuzumab deruxtecan after endocrine therapy in metastatic breast cancer. N Engl J Med. 2024;391:2110–22.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.