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Abstract 

Background  Transcriptomic features of breast cancer locoregional recurrence (LRR) remain poorly understood. We 
therefore sought to investigate transcriptomic features associated with LRR in newly diagnosed invasive breast tumors 
from our institutional dataset.

Methods  Transcriptomic profiling was performed on 632 tumors from consecutive patients treated within our health 
system for newly diagnosed non-metastatic breast cancer. Univariable Cox models identified genes whose expression 
was associated with LRR (q-value < 0.05). Up-regulated (UR) genes were defined as hazard ratio (HR) > 1 and down-
regulated (DR) genes were defined as HR < 1. Gene set enrichment analyses were performed for UR and DR gene sets 
and validated within two external cohorts of ER- tumors.

Results  With a median follow-up of 7.6 years, we observed 38 LRRs: 28/481 (5.8%) in ER + and 10/151 (6.6%) in ER-. 
There were 43 UR and 7 DR genes associated with LRR in ER + tumors, while 417 UR and 1150 DR genes were associ-
ated with LRR in ER- tumors. UR genes in ER + tumors were enriched for roles in cell proliferation (q < 0.05). In contrast, 
LRR in ER- tumors was most strongly associated with DR genes enriched for MHC-II-mediated antigen presentation 
and T cell activation (q < 0.05). In external cohorts of ER- tumors, 97 significant DR genes (p < 0.05) were enriched 
for 18 pathways, including 5 pathways involved in MHC-II signaling, antigen presentation and T-cell activation.

Conclusions  Transcriptomic patterns associated with LRR appear distinct between ER + and ER- tumors. In 
ER + tumors, LRR appears predominantly associated with proliferation, whereas ER- LRR suggests a robust pattern 
of suppressed antigen presentation via MHC-II.
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Background
While there are well-defined clinical risk factors for the 
development of locoregional recurrence (LRR) of breast 
cancer following definitive treatment, clinical outcomes 
cannot be accounted for by clinical factors alone [1, 2]. 
Molecular signatures have been developed to predict 
the risk of distant disease recurrence and now guide 
adjuvant systemic therapy in many patients with early-
stage hormone receptor positive (HR +) breast cancer 
[3, 4]. Such signatures have also been retrospectively 
evaluated in secondary analyses of systemic therapy tri-
als, demonstrating the ability to predict for LRR after 
standard local therapy in HR + and human epidermal 
growth factor receptor-2 negative (HER2-) disease 
(LN-) [5, 6]. While clinical trials utilizing genomic sig-
natures to guide radiotherapy (RT) are ongoing, there 
is no standard of care genomic tool tailored to predict 
LRR or guide local management decisions. As a result, 
local (i.e. whole breast) or locoregional (i.e. whole 
breast plus adjacent nodal stations) RT remains the 
standard of care for women undergoing breast conserv-
ing therapy (BCT), despite the fact that only a subset 
of women benefit from treatment. Improved stratifica-
tion of risk for LRR is therefore vital to identify women 
who may benefit from RT and spare women from RT in 
whom it is unnecessary.

Many genomic classifiers have been developed spe-
cifically to assess local recurrence risk or predict RT 
benefit [7–12], with mixed results on external valida-
tion, possibly owing to differences in technical factors 
or cohort composition, and limited availability of pub-
licly available datasets with annotated local recurrence 
information. Further, these classifiers have focused 
largely on the estrogen receptor positive (ER +) subset 
of breast cancer, with relative under-representation of 
ER- tumors, and validation studies suggest these sig-
natures may perform differently based on ER status [7, 
9, 11]. Therefore, ER + and ER- tumors may necessitate 
separate genomic classifiers of LRR to reflect underly-
ing differences in tumor biology. To our knowledge, no 
genomic classifier of LRR has been developed exclu-
sively in the context of ER- breast cancer.

We posit that improved understanding of the biology 
of LRR with respect to breast tumor subtype may lead 
to (1) more robust genomic models to improve LRR 
stratification and RT treatment selection for localized 
breast cancer and (2) identify potential novel mecha-
nisms by which to augment locoregional control. In this 
study, we utilized gene expression profiling to inves-
tigate transcriptomic factors associated with LRR in 
patients with ER + and ER- localized breast cancer a 
multi-institutional real-world cohort.

Methods
Patients
Primary breast tumor samples were identified from a 
prospective tissue collection protocol representing one 
academic and two community hospitals. Inclusion cri-
teria included chemotherapy-naive women of any age 
with non-metastatic, locoregionally invasive breast car-
cinoma with known estrogen receptor status. Patients 
were treated consecutively, and all treatment decisions 
were according to provider and patient decision. Patho-
logical and clinical information was collected by retro-
spective review of clinical charts.

Transcriptomic profiling and intrinsic subtype classification
Gene expression analysis of tumor samples was per-
formed with Affymetrix Rosetta/Merck Human 
HURSTA 2.0 microarray chips (Thermo Fisher Scien-
tific, MA, USA). Expression values were normalized 
against the medial CEL file using IRON to provide 
logged intensity probeset values as previously reported 
as part of the Total Cancer Care institutional protocol 
[13]. Tumor molecular subtype was determined with 
SCMGENE [14] and the PAM50 [15] gene classifiers (R 
version 3.5.1, package genefu 2.14.0).

Identification of expression of genes associated with time 
to LRR
Univariable and multivariable Cox proportional hazards 
models were fit to assess association of expression of each 
gene with time to LRR, and p-values were adjusted using 
the q-value method to minimize false discovery rate [16]. 
Genes with expression associated with time to LRR with 
a hazard ratio (HR) > 1 (i.e., increased gene expression 
associated with increased hazard for LRR) are defined as 
upregulated, and genes with expression associated with 
time to LRR and HR < 1 are defined as downregulated 
(i.e., increased gene expression associated with decreased 
hazard for LRR). This was performed separately for ER + , 
ER-, and HER2 + patients. All multivariable models 
included margin status and the multivariable model for 
HER2 + patients also included ER status. Additional fac-
tors such as T stage, N stage, and grade were not included 
in the models, as the goal of this study was to uncover 
the biology associated with LRR and we did not want 
to exclude genes just because they were associated with 
more aggressive disease. Cox models and FDR adjusted 
p-values were implemented using R version 4.4.1, pack-
age survival 2.42–3 and q value 2.14.0, respectively.

Gene set enrichment analysis
Gene set enrichment analysis (GSEA) was performed 
separately for up- and downregulated genes with the 
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Enrich R tool (http://​amp.​pharm.​mssm.​edu/​Enric​hr/) 
[17, 18]. Gene network analysis was performed with the 
IntAct database to identify co-expressed networks of 
genes with biological relevance (http://​www.​ebi.​ac.​uk/​
intact) [19].

Network analysis
In order to gain further insight of the complex rela-
tionship between individual genes, a Gaussian graphi-
cal model (GGM) [20] was constructed on the probeset 
level. Gaussian graphical models (GGMs) measure the 
direct correlation between two probes. Direct correla-
tion between any two probes is computed adjusting for 
all other probes. Once the direct correlation is com-
puted for each pair of probes, A modified lasso regres-
sion procedure (53) is used in order to construct a sparse 
network, i.e. a network with a smaller number of edges 
as the penalty increases. Modules were identified by 
using Weighted Gene Co-expression Network Analysis 
(WCGNA) (16, 21), which uses hierarchical clustering to 
assign each gene to a module. Two genes are assigned to 
the same module if they share a large number of edges 
with other probes (neighbors). This analysis can be done 
in two ways: (1) the strength of the connection between 
two probes are assumed to be the same (unweighted), or 
(2) the strength of connections between the probes are 
allowed to vary (weighted). Since we have already con-
ducted lasso to identify the significant edges, WCGNA 
will be conducted on an unweighted network. In this set-
ting, the modules are interpreted exactly as previously 
described. Once probes are assigned to modules, we then 
identify hubs by computing the number of neighbors that 
each probe has within that corresponding module. The 
probe that has the most neighbors is considered to be the 
hub of that module. GGMs were implemented in R (ver-
sion 3.5.1) using Genenet v1.2.13.

Tumor infiltrating immune cell type deconvolution
We employed the CIBERSORT LM22 signature [21] to 
estimate the proportion of 22 types of tumor-infiltrating 
leukocytes (TILs). We used two sample t-tests to deter-
mine if there is difference in the mean proportion of 
immune cell types in patients who had or did not have 
LRR. Additionally, Cox proportional hazard models were 
performed to determine if any immune cell type in the 
CIBERSORT signature are related to risk LRR. Lastly, we 
examined the correlation between T-cell type propor-
tions and gene expression from major histocompatibility 
complex (MHC)-II protein complex gene set. The CIB-
ERSORT signature was implemented using CIBERSORT 
v1.0

External validation
To determine if there are common themes in other stud-
ies to identify genes associated with risk of LRR, uni-
variable Cox models were fit and GSEA was employed 
in two independent datasets accessed via the Gene 
Expression Omnibus (GEO) [8, 9]. The Servant dataset 
(GEO:GSE30682) is composed of 343 patients age < 50 
with breast cancer treated with breast conserving surgery 
and adjuvant whole breast RT, including 76 ER- tumors 
[8]. The Sjostrom dataset (GEO:GSE103746) is composed 
of 172 patients treated with breast conserving surgery at 
six centers in Sweden, including 70 ER- tumors [9]. The 
genes included in the GSEA had a p-value < 0.05 on uni-
variable Cox regression for LRR in their respective stud-
ies. All analyses in external cohorts were restricted to 
the ER- patients, and separate analyses are presented for 
genes with positive and negative association risk of LRR.

Statistical analysis
Patient and clinical characteristics were summarized 
using descriptive statistics including median and range 
for continuous measures, and proportions and frequen-
cies for categorical measures. Associations between con-
tinuous and categorical variables were evaluated using 
Kruskal–Wallis tests and means comparisons of con-
tinuous variables with T-tests where appropriate. The 
associations between categorical variables were evalu-
ated using Chi-squared tests or Fisher’s exact tests where 
appropriate. Time-to-event analysis was conducted using 
the minimum of time from date of diagnosis to LRR with 
univariable Cox models and the Kaplan Meier method 
with log rank tests.

Data availability
Gene expression data with matching clinical information 
including patient age, stage, receptor status, grade, treat-
ment information and locoregional recurrence status are 
uploaded to the Gene Expression Omnibus (GSE199633) 
and can be accessed at https://​www.​ncbi.​nlm.​nih.​gov/​
geo/​query/​acc.​cgi?​acc=​GSE19​9633.

Results
Cohort characteristics
A total of 632 patients met inclusion criteria for analysis. 
Median follow-up from time of diagnosis was 7.6 years. 
The median age at time of diagnosis was 61 years (range 
24–95), 76% of tumors were ER + , 91.6% were pT1-T2, 
and 40.5% had positive lymph nodes (Table 1). A total of 
23.2% of patients were HER2 + and 30.5% were consid-
ered HER2 low [22] (Supplemental Tables A and B). We 
observed 38 LRRs: 28/481 (crude rate 5.8%) in ER + and 
10/151 (crude rate 6.6%) in ER- tumors. Sixty-three 

http://amp.pharm.mssm.edu/Enrichr/)
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https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE199633
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patients (10%) experienced distant recurrence. Of this 
distant recurrence subset, 43 patients (68.3%) died. Of all 
632 patients, 99 (15.7%) died.

Analysis of LRR reveals distinct genomic pathways 
of tumor progression
Univariable Cox regression identified 50 genes associ-
ated with time to LRR in ER + tumors and 1567 genes 

Table 1  Patient characteristics

ER, Estrogen receptor; PR, Progesterone receptor; HER2, Human epidermal growth factor receptor 2; LRR, Locoregional recurrence

Overall ER- ER +  p Value No LRR LRR p Value
N = 632 n = 151 n = 481 n = 516 n = 116

Age at diagnosis (years, median) 61.0 56.7 62.2  < 0.001 59.5 67.9  < 0.001

Age at diagnosis (years, range) 24.9–95.5 25.6–89.3 24.9–95.5 24.9–94.5 25.3–95.5

Histology  < 0.001 0.75

 Invasive ductal 519 (82.1%) 145 (96.0%) 374 (77.8%) 423 (82.0%) 96 (82.8%)

 Invasive lobular 72 (11.4%) 2 (1.3%) 70 (14.6%) 58 (11.2%) 14 (12.1%)

Other 41 (6.5%) 4 (2.6%) 37 (7.7%) 35 (6.8%) 6 (5.2%)

PR Positive 399 (63.2%) 9 (6.0%) 390 (81.0%)  < 0.001 334 (64.7%) 65 (56.0%) 0.088

HER2 Positive 111 (17.6%) 41 (27.2%) 70 (14.6%) 0.001 93 (18.0%) 18 (15.5%) 0.45

pT stage 0.095  < 0.001

 1 312 (49.4%) 76 (50.3%) 236 (49.1%) 275 (53.3%) 37 (31.9%)

 2 166 (42.1%) 70 (46.4%) 196 (40.7%) 206 (39.9%) 60 (51.7%)

 3 44 (7.0%) 3 (2.0%) 41 (8.5%) 30 (5.8%) 14 (12.1%)

 4 7 (1.1%) 1 (0.7%) 7 (1.1%) 3 (0.6%) 4 (3.4%)

 1mi 2 (0.3%) 1 (0.7%) 1 (1.1%) 1 (0.2%) 1 (0.9%)

 Unknown 1 (0.2%) 0 1 (0.2%) 1 (0.2%) 0

Lymph node positive 256 (40.5%) 51 (33.8%) 205 (42.6%)

pN Stage 0.14 0.001

 0 366 (58.0%) 99 (66.0%) 267 (55.5%) 305 (59.1%) 61 (52.6%)

 1 152 (24.1%) 32 (21.3%) 120 (24.9%) 126 (24.4%) 26 (22.4%)

 2 50 (7.9%) 11 (7.3%) 39 (8.1%) 36 (7.0%) 14 (12.1%)

 3 25 (4.0%) 3 (2.0%) 22 (4.6%) 15 (2.9%) 10 (8.6%)

 1mi 29 (4.6%) 5 (3.3%) 24 (5.0%) 28 (5.4%) 1 (0.9%)

 Unknown 10 (1.6%) 1 (0.7%) 9 (1.9%) 6 (1.2%) 4 (3.4%)

Local therapy 0.33 0.069

 Mastectomy alone 232 (36.7%) 64 (42.4%) 168 (34.9%) 194 (37.6%) 38 (32.8%)

 Mastectomy + radiation 120 (19.0%) 22 (14.6%) 98 (20.4%) 95 (18.4%) 25 (21.6%)

 Lumpectomy alone 17 (2.7%) 4 (2.6%) 13 (2.7%) 10 (1.9%) 7 (6.0%)

 Lumpectomy + radiation 254 (40.2%) 60 (39.7%) 194 (40.3%) 211 (40.9%) 43 (37.1%)

 Unknown 9 (1.4%) 1 (0.7%) 8 (1.7%) 6 (1.2%) 3 (2.6%)

Positive Surgical Margins 34 (5.4%) 8 (5.3%) 26 (5.4%) 0.85 21 (4.1%) 13 (11.2%) 0.008

Received adjuvant chemotherapy 363 (57.4%) 124 (82.1%) 239 (49.7%)  < 0.001 312 (60.5%) 51 (44.0%) 0.004

Pam50 Molecular Subtype  < 0.001 0.16

 Basal 82 (13.0%) 74 (49.0%) 8 (1.7%) 64 (12.4%) 18 (15.5%)

 Her2 76 (12.0%) 46 (30.5%) 30 (6.2%) 61 (11.8%) 15 (12.9%)

 LuminalB 179 (28.3%) 6 (4.0%) 173 (36.0%) 228 (44.2%) 38 (32.8%)

 LuminalA 266 (42.1%) 15 (9.9%) 251 (52.2%) 138 (26.7%) 41 (35.3%)

 Normal 29 (4.6%) 10 (6.6%) 19 (4.0%) 25 (4.8%) 4 (3.4%)

SCMGENE Molecular Subtype  < 0.001 0.47

 ER-/HER2- 110 (17.4%) 90 (59.6%) 20 (4.2%) 88 (17.1%) 22 (19.0%)

 ER + /HER2- High prolif 288 (45.6%) 18 (11.9%) 270 (56.1%) 230 (44.6%) 58 (50.0%)

 ER + /HER2- Low prolif 160 (25.3%) 6 (4.0%) 154 (32.0%) 137 (26.6%) 23 (19.8%)

 HER2 +  74 (11.7%) 37 (24.5%) 37 (7.7%) 61 (11.8%) 13 (11.2%)
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associated with time to LRR in ER- tumors. (q < 0.05) 
(Supplemental Table  2). In ER- tumors, 417 genes were 
up-regulated and 1150 were down-regulated in their 
association with LRR (Fig. 1A), suggesting that inhibitory 
(i.e. down-regulation) transcriptional events were more 
strongly correlated with LRR than activating events (i.e. 
up-regulation). There were only four overlapping genes 
associated with LRR in both ER + and ER- cohorts. In 
ER + tumors, this included 43 genes that were up-reg-
ulated and 7 genes that were down-regulated in their 
association with time to LRR (Fig.  1B). The univari-
able Cox regression showed no significant genes in the 
HER2 + cohort.

In the multivariate case of Cox regression, in which 
margin status was also included as a covariate, we identi-
fied 97 genes associated with time to LRR in ER + tumors 
and 1794 genes associated with time to LRR in ER- 
tumors (q < 0.05). In ER + tumors, this included 82 genes 
that were up-regulated (gene expression HR > 1) and 15 
genes that were down-regulated (HR < 1). In ER- tumors, 
468 genes were up-regulated and 1327 were down-reg-
ulated in their association with LRR, showing that the 
correlation between inhibitory transcriptional events 
and LRR is maintained when margin status is consid-
ered in the model. The multivariate Cox model also 
analyzed samples of HER + tumors, in which 217 genes 
were found to be associated with time to LRR. Of these 
genes, 54 were up-regulated and 163 were down-regu-
lated, showing a similar trend of correlation as seen in the 
ER- cohort.

GSEA identified distinct roles for genes associated 
with LRR in both ER- and ER + tumors. Up-regulated 
genes associated with LRR in ER + tumors were nota-
ble for roles in the centromere complex during cell 
division, which was confirmed by enriched biologi-
cal pathways. While we identified 72 pathways signifi-
cantly associated with the down-regulated gene set in 
ER + tumors, each pathway had only one overlapping 
gene (Supplemental Table 3).

In contrast to ER + tumors, ER- tumors exhibited a 
far more robust transcriptome profile associated with 
LRR, particularly in the down-regulated gene set. In 
ER- tumors, GSEA identified 8 pathways associated 
with the up-regulated gene set, and 75 pathways asso-
ciated with the down-regulated gene set (Supplemental 
Table  4). The set of up-regulated genes was enriched 
for roles in ribosomal and translational processes. The 
down-regulated gene set was enriched for roles in the 
immune response, as 33 of the 75 significant pathways 
were involved in generation of the adaptive immune 
response. Specifically and most notably, these immune 
response genes were enriched for roles in the exog-
enous antigen presentation pathway via antigen pres-
entation on MHC-II and subsequent downstream 
adaptive T cell response via cytokine and interferon 
gamma (IFNγ) signaling, and B cell activation. Given 
existing genomic signatures of LRR in ER + tumors and 
the much stronger signal observed in ER- tumors, we 
subsequently focused our analyses on ER- tumors.

Fig. 1  Volcano plots displaying results of univariate Cox regression relating gene expression to time to locoregional recurrence for subsets 
of ER- (A) and ER + (B) tumors. In each panel, genes with an FDR-adjusted p-value less than 0.05 are colored blue. p-values were FDR-adjusted using 
Benjamini–Hochberg procedure
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Network modeling of ER- tumors reveals down-regu-
lation of distinct immune modules associated with LRR:

We next performed Gaussian graphical modeling of the 
down-regulated genes from the ER- gene set and iden-
tified 6 network clusters optimized for co-expression 
(Fig. 2). GSEA was used to assess the underlying biology 
in each cluster, where four of the six clusters contained 
significantly enriched pathways (Supplemental Table  5). 
Most notably, the tightly clustered blue module con-
tains genes enriched for immune activation pathways 
described above, including MHC-II and subsequent 
downstream adaptive T-cell and B-cell response signaling 
pathways. These findings identify the tumor antigen pres-
entation process as a component of tumor biology with a 
robust role in the development of LRR.

Individual gene‑level analysis confirms MHC‑II pathway 
downregulation as a primary feature of LRR
Structural MHC-II genes such as CD74, HLA-DMA, 
HLA-DMB, HLA-DRA, HLA-DRB, HLA-DQA1, HLA-
DPA1, and HLA-DOA were significantly down-regulated, 
but highly co-expressed with strong correlation with 

expression of CIITA, the principal regulator of MHC-
II expression, and IFNγ, a modulator of CIITA-induced 
MHC-II expression [23]. Likewise, there was also asso-
ciation between expression of MHC-II genes and MX1 
and EIF2AK2, known mediators of IFNγ [24, 25]. Expres-
sion of MHC-II genes were positively correlated with 
expression of downstream adaptive immune response 
genes including IFNγ and IFNγ-responsive chemokines 
(CXCL9-11) and signal transducers (STAT1), Th response 
(LAG3, CD3), B-cell function (MS4A1), and cytotoxic 
CD8 + T- and NK cell (NKC) function (GZMA, GZMK, 
PRF1, NKG7). Interestingly, there was also correlation 
between MHC-II and CD274 (PD1) and PCD1 (PDL-1) 
(Fig. 3).

Greater than median expression (“high expression”) of 
MHC-II genes such as HLA-DQA1, HLA-DPA1, HLA-
DOA were each individually associated with improved 
locoregional control on KM survival analysis using the 
log-rank test (p < 0.05).

CIBERSORT analysis identifies discrete TIL profiles 
associated with LRR
Given the suggestion that MHC II-based antigen pres-
entation was downregulated and associated with LRR, 
we next investigated metrics of tumor immune cell 
infiltrates. Expression of MHC-II genes including HLA 
genes, CIITA, and CD74 were associated with an anti-
tumor T cell response, represented by positive cor-
relation with proportion of infiltrating CD8 + T cells 
(Fig.  4A), and negative correlation with infiltration of 
immunosuppressive T regs (Fig.  4B). MHC-II gene 
expression was also positively correlated (p < 0.05) with 
proportion of Th cells, and Gamma Delta T cells, and 
negatively correlated with naïve CD4 + T cells and T regs 
(p < 0.05) (Fig.  4C, Supplemental Table  6). While HLA-
DOB and HLA-DQA1 are included in the CIBERSORT 
LM22 gene matrix, they are not a dominant component 
of T cell signatures in the module [26]. There was weak 
association between MHC-II expression and proportion 
of resting and activated dendritic cells (DCs) for most 
MHC-II associated molecules; only CIITA, HLA-DMA, 
-DMB, and DQA1 were weakly correlated with resting 
DCs, and only CD74 was weakly correlated with acti-
vated DCs (p < 0.05) (Supplemental Table  6). HLA-DOA 
was positively correlated with the ratio of activated mem-
ory CD4 + T helper cells (Th) to T regs and the ratio of 
M1 macrophages to M2 macrophages, and weakly nega-
tively correlated with the ratio of activated to resting DCs 
(Fig. 4D). An elevated ratio of Th to T regs and M1 to M2 
macrophages above the cohort median value were each 
associated with decreased LRR on Kaplan Meier analysis 
(Fig. 4E, F), as was high proportion (greater than cohort 

Fig. 2  Visualization of gaussian graphical model for down-regulated 
gene set for ER- tumors. Circles represent individual genes. Each 
color represents membership in one of six modules. Lines represent 
“edges” or connections between genes. Module hub genes are those 
with the highest number of edges per module and are denoted 
with triangles. GSEA was used to assess the underlying biology 
in each module, where four of the six modules contained significantly 
enriched pathways loosely corresponding to MHC II signaling (blue), 
DNA damage response (turquoise), extracellular matrix organization 
(brown), and transcription regulation (red), respectively
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median) of CD8 + T cells, activated NKCs, and memory 
B cells (p < 0.05).

External validation shows conservation of down‑regulated 
MHC‑II pathways across cohorts
We next sought to validate the observed association 
between MHC-II immune inhibition and LRR using 
external cohorts. Assessment of gene expression from 
ER- tumors in two external datasets with LRR status 
(Servant n = 76, Sjostrom n = 70) identified a set of 97 
genes associated with time to LRR (q < 0.05) replicated 
with the same directionality in each external cohort 
GSEA were performed for the up- and down-regulated 
gene sets in each cohort, utilizing a less stringent con-
firmatory (vs. exploratory) cutoff for gene inclusion 
(p < 0.01). There were no enriched pathways associated 
with the up-regulated gene sets in either external cohort. 
For the down-regulated gene sets, 18 enriched pathways 
from the primary analysis were replicated in both exter-
nal cohorts, which mirrored our observation within the 

primary study cohort of down-regulation being the pre-
dominant transcriptional feature associated with LRR. 
Five of the 18 replicated pathways were associated with 
antigen processing and presentation and subsequent 
interferon gamma signaling and T cell receptor activation 
(Supplemental Table 7).

Discussion
To our knowledge, we present the largest cohort to date 
of consecutively treated breast cancer patients with 
locoregional failure status and available genomic profil-
ing. We identified a robust network of down-regulated 
genes in localized ER- breast cancer that are implicated 
in functions across the immune response spectrum, 
most notably for roles in antigen presentation through 
the MHC-II pathway. We identified an integrated net-
work of adaptive immune response genes encompass-
ing IFNγ-induced, CIITA-mediated MHC-II expression 
with subsequent infiltration and response of effector cells 
including CD4 + T helper, CD8 + T cells, and CD20 + B 

Fig. 3  Correlation matrix of expression of down-regulated immune function genes in ER- tumors. Spearman correlation coefficients are denoted 
by circle size and color (red = positive, blue = negative, white/no circle = zero)
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cells, all of which were associated with improved locore-
gional breast cancer control. MHC-II expression was cor-
related with a decreased proportion of pro-tumorigenic 
immune cells such as T regulatory cells and M2 mac-
rophages. In the absence of association between MHC-
II expression and a dendritic cell signature, these data 
suggest that it may be breast tumor cells themselves, 
rather than invading antigen presenting cells, that may 
be expressing these MHC-II markers. We then validated 

the association of down-regulated MHC-II pathways in 
ER- breast cancer with locoregional control in two exter-
nal datasets. This population-level characterization of the 
biology of locoregional recurrence carries ramifications 
for risk stratification, treatment selection, and develop-
ment of potential novel therapeutic strategies in ER- 
breast cancer.

There is an accumulating body of evidence linking 
the immune system with breast cancer outcomes and 

Fig. 4  A Scatterplot of expression of CD74, CIITA and MHC-II HLA genes vs estimated CD8 + T cell proportion by CIBERSORT. B Heatmap 
of expression of CD74, CIITA, and MHC-II HLA genes vs proportion of T cell populations by CIBERSORT. Spearman correlation coefficients are 
denoted by 24 cell color (red = positive, blue = negative, white = zero). C Kaplan Meier plot comparing time to locoregional recurrence of activated 
CD4 + T cell to T reg ratio above cohort median (“CD4 Ratio = above”) to below the cohort median (“CD4 Ratio = below”). D Kaplan Meier plot 
comparing time to locoregional recurrence of M1 to M2 macrophage ratio above cohort median (“Macro Ratio = above”) to below the cohort 
median (“Macro Ratio = below”)
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response to treatment. Triple negative breast cancer 
(TNBC) and ER-/HER2 + tumors are thought to be the 
most immunogenic breast cancer subtypes, with higher 
rates of immune cell infiltrates than their ER + coun-
terparts [27]. Studies evaluating immune response in 
ER- breast cancers have identified distinct immunophe-
notypes associated with differing outcomes, and this has 
been proposed as a method to differentiate between high 
and low risk groups [28–30]. Further characterization of 
breast tumor immunobiology may provide insight into 
the mechanisms of immune escape and local failure, with 
these insights being incorporated into prediction models 
aiming to classify risk and improve treatment selection. 
Such strategies are sorely needed for ER- negative breast 
cancers, given the relatively limited representation of ER- 
tumors in previously published genomic signatures of 
local or regional recurrence.

Results from our study support the concept of the 
existence of contrasting immune-rich vs. immune-poor 
breast cancer subgroups, particularly in TNBC. Lehmann 
et  al. described six distinct TNBC subtypes, including 
an immunomodulatory (IM) subtype with a molecular 
profile most notable for increased expression of genes 
encoding immune markers and signaling transduction, 
predominantly in antigen presentation and T cell effector 
processes [31]. Similarly, Bonsang-Kitzis et al. identified 
six distinct TNBC metagenes, including two immune-
signature rich clusters, enriched for reflective of inter-
feron alpha and gamma pathways (Immunity1), and B-, 
T- and CD8 + cell signatures (Immunity2) [32]. These 
results were further supported by Jezequel et  al. who 
described two subsets of basal-like tumors with oppos-
ing immune infiltration profiles consisting of one group 
with elevated ratios of M2 to M1 macrophages and TGFβ 
signaling, in contrast to another group with signatures 
for a robust adaptive immune response with infiltra-
tion of T-cells, B-cells and activated type I interferon, 
MHC-I and MHC-II signaling features [33]. Thus, tumors 
with profiles for immune activation represent a distinct 
subgroup.

Our results suggest that the tumor subset with immune 
down-regulation, particularly in genes involved in anti-
gen presentation via the MHC-II pathway, is associ-
ated with worse locoregional disease control, and to our 
knowledge marks the first study to report such an associ-
ation. A low Immunity2 score in the Bonsang-Kitzis sub-
type classification was associated with poor disease-free 
survival [32], and Lehmann noted that IM classification 
was associated with improved prognosis regardless of 
TNBC subtype [34]. Forero et al. also reported the impor-
tance of antigen-presentation pathways, as they observed 
that up-regulation of MHC-II gene expression is highly 
associated with improved progression-free survival in 

triple negative cases [35]. Tumor characteristics and 
treatment profiles in the Lehman cohort were similar to 
ours, though their cohort was selected to have a relapse 
rate of 46.8%, whereas our cohort was consecutively 
treated and thus possibly more representative of the risk 
of LRR seen in practice. Importantly, the genes identi-
fied as among the most associated with progression-free 
survival by Forero include CIITA, CD74, and multiple 
HLA-DP, -DQ, and -DR genes, the same genes identified 
among the most important in our analysis. Similar results 
were reported by Ascierto et al., who observed that up-
regulated genes associated with improved relapse free 
survival were enriched for concepts in antigen processing 
and presentation, and interferon gamma signaling [36]. 
We demonstrate these findings in multi-institutional and 
multi-national cohorts, suggesting a generalized conser-
vation of this phenomenon across the ER- breast cancer 
population.

Prognostic gene signatures are widely used to predict 
disease-free survival in early-stage ER + tumors [3, 4]. 
Although signatures for LRR have also been developed in 
the research setting [9, 11, 37, 38], ER- tumors compose 
the minority in these cohorts. Recently-developed signa-
tures aiming to predict intrinsic radiosensitivity such as 
the radiosensitivity signature (RSS) developed by Speers 
et  al. at the University of Michigan [11] and the radio-
sensitivity index (RSI) developed by Torres-Roca et al. at 
Moffitt Cancer Center [37] showed disparate predictive 
and prognostic utility in ER + vs ER- tumors in an inde-
pendent cohort [9]. With only 4 overlapping significant 
genes between ER + and ER- tumors and disparate results 
in pathway analyses, our results confirm differences in 
biology between ER + and ER- tumors with respect to 
locoregional recurrence and demonstrate the need for 
development of separate classifiers between the two 
subsets for optimal results. We posit that gene expres-
sion signatures attempting to stratify risk for LRR in ER- 
breast cancer should be ER-status specific, as signatures 
with an underlying coherent function may perform more 
reliably than those assembled with no regard for biology 
[39].

Recent evidence, including the randomized phase III 
KEYNOTE 522 study, demonstrates an increased rate 
of pathological complete response (pCR) and improved 
event-free survival with the addition of pembrolizumab, 
an anti-programmed death ligand-1 (PD-L1) monoclonal 
antibody, to standard neoadjuvant chemotherapy (NAC) 
for TNBC [40–42]. While these results are promising, 
patients receiving pembrolizumab had increased risk 
for severe adverse events, highlighting the importance 
of appropriate patient selection for anti-PD-L1 agents. 
While patients in KEYNOTE-522 with high tumor 
PD-1 staining received comparatively higher benefit 
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from pembrolizumab, patients with low PD-1 also ben-
efited. Thus, alternative biomarkers to PD-1 should be 
investigated in this regard to optimize patient selection 
criteria. Work by Johnson et  al. demonstrated in two 
independent cohorts of melanoma patients treated with 
anti-PD-1 therapy, MHC-II positivity on tumor cells was 
associated with therapeutic response [43]. While breast 
tumor biology remains distinct from that of melanoma, 
we hypothesize that the presence of MHC-II expression 
might inform therapeutic selection for anti-PD1 and -L1 
therapies.

There is increasing interest in novel strategies incor-
porating neoadjuvant radiotherapy to expose neoanti-
gens and augment the anti-tumor immune response to 
overcome intrinsic resistance to immune checkpoint 
inhibitor therapy in TNBC [44]. While early studies in 
metastatic TNBC including the phase 2 TONIC trial 
from Netherlands Cancer Institute [45] and a multi-
institutional phase 2 study [46] demonstrated somewhat 
disappointing overall response rates with combination 
RT and immunotherapy, our observations demonstrating 
the role of antigen presentation and subsequent down-
stream response in locoregional control suggest that the 
combination of locally ablative radiotherapy to augment 
systemic immune responses may be a rational approach 
for localized disease. We propose that a framework uti-
lizing transcriptomic metrics of MHC-II/exogenous anti-
gen presentation for selection of breast tumors which 
may harbor optimal biology to benefit from the combi-
nation of radiotherapy and immunotherapy and may 
inform future clinical trial design for appropriate integra-
tion of immunotherapy into the breast cancer treatment 
paradigm.

In the modern era, the standard of care for many ER- 
patients is treatment with NAC with a growing role 
for integration of neoadjuvant immune checkpoint 
inhibition in this setting as well. There is a rich litera-
ture investigating the immune response in TNBC and 
HER2 + breast cancer following NAC, demonstrating 
the correlation between immune infiltration and disease 
outcomes [47, 48] with respect to distant disease fail-
ure, which has not to our knowledge been reported with 
respect to LRR. Our study excluded patients treated with 
NAC due to the possibility that chemotherapy may alter 
gene expression, and thus, insights taken from the setting 
of NAC are limited. Similarly, the results described here 
require validation by tissue examination with immuno-
histochemical staining to elucidate the degree of tumor 
immune cell infiltration as well as the spatial distribution 
of these markers to support the hypothesized mechanism 
of immune activation. Future research is warranted to 
confirm proteomic-level and cell lineage (i.e. cancer vs. 
stromal) differences in MHC-II axis signaling.

Conclusion
We provide evidence supporting the existence of distinct 
biologic pathways contributing to locoregional recur-
rence in ER + and ER- breast cancer subtypes. Consist-
ent with previous literature, we observed that LRR in 
ER + tumors is associated with transcriptomic enrich-
ment of genes with roles in proliferation. In contrast, 
ERR LRR was strongly correlated with transcriptomic 
down-regulation of MHC-II expression, antigen process-
ing and presentation, and T-cell receptor signaling. We 
confirmed these findings in two independent cohorts, 
suggesting that immune-mediated suppression of LRR is 
a generalized feature of ER- tumors, but not necessarily 
ER + tumors. Our findings are consistent with the rap-
idly advancing understanding that the immune response 
has a prominent role in promoting optimal locoregional 
control in ER- breast cancer. Future investigation is war-
ranted to understand the gene regulatory and therapeu-
tic implications of this phenomena and may inform the 
rational combination of radiation therapy with immune-
based therapeutics in the clinic.
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