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Abstract
Background In HR+/HER2- early breast cancer (EBC) patients, approximately one-third of stage II and 50% of stage III 
patients experience recurrence, with poor outcomes after recurrence. Given that these patients commonly undergo 
adjuvant chemo-endocrine therapy (C-ET), accurately predicting the recurrence risk is crucial for optimizing treatment 
strategies and improving patient outcomes.

Methods We collected postoperative histopathological slides from 1095 HR+/HER2- EBC who received C-ET and 
were followed for more than five years at West China Hospital, Sichuan University. Two deep learning pipelines were 
developed and validated: ACMIL-based and CLAM-based. Both pipelines, designed to predict recurrence risk post-
treatment, were based on pretrained feature encoders and multi-instance learning with attention mechanisms. Model 
performance was evaluated using a five-fold cross-validation approach and externally validated on HR+/HER2- EBC 
patients from the TCGA cohort.

Results Both ACMIL-based and CLAM-based pipelines performed well in predicting recurrence risk, with UNI-ACMIL 
demonstrating superior performance across multiple metrics. The average area under the curve (AUC) for the UNI-
ACMIL pipeline in the five-fold cross-validation test set was 0.86 ± 0.02, and 0.80 ± 0.04 in the TCGA cohort. In the 
five-fold cross-validation test sets, effectively stratified patients into high-risk and low-risk groups, demonstrating 
significant prognostic differences. Hazard ratios for recurrence-free survival (RFS) ranged from 5.32 (95% CI 1.86-15.12) 
to 15.16 (95% CI 3.61-63.56). Moreover, among six different multimodal recurrence risk models, the WSI-based risk 
score was identified as the most significant contributor.
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Introduction
HR+/HER2- breast cancer is the most common sub-
type, accounting for approximately 70%~75% of all 
breast cancer cases, with the majority diagnosed at early 
stages (stage I-III). Despite generally favorable progno-
ses, patients with HR+/HER2- early breast cancer (EBC) 
remain at risk for recurrence. Studies show that 27%~37% 
of stage II patients and 46%~57% of stage III patients 
experience recurrence after completing five years of stan-
dard endocrine therapy (ET) [1], while approximately 
20% relapse following adjuvant chemo-endocrine therapy 
(C-ET) [2]. These figures suggest the presence of a more 
aggressive subgroup within HR+/HER2- EBC, high-
lighting the importance of accurately identifying these 
patients. This is crucial for tailoring treatment plans and 
formulating appropriate recommendations for adjuvant 
therapies aimed at preventing recurrence. Common 
prognostic factors in HR+/HER2- breast cancer include 
tumor size, lymph node status, Ki-67 index, lymphovas-
cular invasion, histological grade, and multigene assay 
scores. Risk prediction models incorporating these fac-
tors have shown significant prognostic value. However, 
these models primarily focus on the risk of recurrence 
after endocrine therapy, often overlooking the impact of 
chemotherapy and missing additional valuable informa-
tion contained in histopathological slides.

Histopathological slides of breast cancer contain a 
wealth of prognostically relevant information, including 
cellular atypia, duct formation, mitotic activity and vas-
cular tumor emboli. However, inter-observer and intra-
observer variability often arise when pathologists visually 
quantify these features. To address this, several studies 
have proposed using deep learning to automate quan-
tification in order to improve assessment consistency 
[3–5]. In recent years, deep learning has demonstrated 
exceptional performance in image interpretation tasks, 
enabling automatic feature extraction without the need 
for manually predefined structures of interest [6–8]. A 
key advantage of deep learning-based histopathologi-
cal prediction is that these models are not constrained 
by prior knowledge of predefined image features. 
Instead, they can evaluate any histopathological pattern 
and incorporate it alongside other coexisting patterns, 
thereby generating risk scores that reflect a comprehen-
sive assessment of the tissue.

To predict the recurrence risk in HR+/HER2- EBC 
patients following adjuvant C-ET, we developed two 
deep learning pipelines based on pretrained tissue-spe-
cific feature extractors and multi-instance learning with 
attention mechanisms. Additionally, we integrated the 
WSI-based risk score with clinicopathological factors 
to construct a multimodal recurrence risk prediction 
model. The model was validated using five-fold cross-val-
idation method, and we explored the pathophysiological 
mechanisms associated with the WSI-based risk score to 
provide biological interpretability for the deep learning-
based prediction.

Currently, no established model exists for predicting 
the recurrence risk of HR+/HER2- EBC patients follow-
ing adjuvant C-ET. Therefore, in this study, we combined 
histopathological slide information with clinicopatho-
logical factors to construct a multimodal model capa-
ble of predicting recurrence risk in HR+/HER2- EBC 
patients. This approach enables the identification of high-
risk patients who may still experience recurrence, ulti-
mately aiding in the formulation of precise therapeutic 
strategies.

Materials and methods
Patient cohort
In this retrospective study, we utilized H&E-stained 
slides of HR+/HER2- EBC from the Pathology Depart-
ment of West China Hospital, Sichuan University, for 
model training and validation. As of May 31, 2023, a 
total of 30,004 breast cancer patients were retrieved from 
the Breast Cancer Management Information System at 
West China Hospital (WCH). Medical records, patho-
logical diagnoses, and treatment information were col-
lected by professional physicians. Patients were followed 
up through outpatient visits or telephone calls every 3-4 
months during the first 2 years after initial diagnosis, 
every 6 months for the subsequent 3-5 years, and annu-
ally thereafter. The inclusion criteria for the study were 
as follows: (1) unilateral primary invasive breast cancer, 
clinically staged as I-III at the time of initial diagnosis; (2) 
patients who received adjuvant C-ET within 3 months 
postoperatively, without any preoperative treatments; (3) 
patients with a clear postoperative pathological diagno-
sis. The exclusion criteria were: (1) patients with clinical 
stage IV; (2) patients with multifocal or bilateral invasive 
breast cancer; (3) patients who received only adjuvant ET 

Conclusion Our multimodal recurrence risk prediction model is a practical and reliable tool that enhances the 
predictive power of existing systems relying solely on clinicopathological parameters. It offers improved recurrence 
risk prediction for HR+/HER2- EBC patients following adjuvant C-ET, supporting personalized treatment and better 
patient outcomes.
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or CT; (4) patients with incomplete clinical information. 
Detailed inclusion and exclusion criteria are provided in 
the Figure S1. We also used an external validation cohort 
consisting of 325  HR+/HER2- EBC patients from The 
Cancer Genome Atlas (TCGA) database, who met the 
inclusion criteria, to evaluate the deep learning models.

Experimental design
The deep learning models generated patient-level risk 
scores and assessed the model’s ability to predict recur-
rence risk in HR+/HER2- EBC patients following adju-
vant C-ET. Model performance was evaluated using area 
under the receiver operating characteristic curve (AUC), 
accuracy, precision, recall, and F1 score. Patients were 
classified into high-risk (above the threshold) and low-
risk (below or equal to the threshold) groups based on 
the median WSI-based risk score derived from the train-
ing set. In the WCH cohort, we performed the following 
analyses: First, we assessed whether the WSI-based risk 
score provided additional prognostic value across distinct 
pathological and clinical grades. Kaplan-Meier analysis 
and log-rank tests were used to compare differences in 
recurrence survival between the groups. Subsequently, 
we applied the Cox proportional hazards model to evalu-
ate recurrence survival differences within these groups. 
Next, we integrated the WSI-based risk score with clini-
copathological factors to develop multimodal recurrence 
risk prediction models. This integration was performed 
using classical Cox proportional hazards regression 
(CPH), elastic net Cox (EN-Cox), gradient boosting 
regression tree (GBRT), Lasso-Cox, Ridge-Cox, and 
random survival forest (RSF). The training labels for all 
machine learning models included both the recurrence 
status of the patients, with detailed parameters provided 
in Table S1. We then performed 5-fold cross-validation, 
with data divisions corresponding to those used in the 
deep learning model, to compare the performance of 
these different models. The primary analysis endpoints of 
this study was recurrence-free survival (RFS) and the sec-
ondary analysis endpoint was overall survival (OS). RFS 
was defined as the interval from surgery to recurrence, 
metastasis, death from breast disease, or last follow-up. 
OS was defined as the time from surgery to death from 
any cause or the last follow-up date.

Statistics
Statistical analyses were performed using R software 
version 4.3.2. The survcomp package was used to calcu-
late the concordance index (C-index) and its 95% confi-
dence interval (CI). Time-dependent receiver operating 
characteristic (ROC) analysis was conducted using the 
timeROC package. Kaplan-Meier analysis and log-rank 
tests were carried out using the survival and survminer 
packages. Multivariate analysis was conducted using the 

Cox proportional hazards model from the survival pack-
age. All survival models (CPH, EN-Cox, GBRT, Lasso-
Cox, Ridge-Cox, and RSF) were constructed using the 
scikit-survival package in Python. All the statistical tests 
were two-sided, with a P < 0.05 considered to indicate sta-
tistical significance.

Image preprocessing
H&E-stained 4-µm FFPE tissue sections from 1095 HR+/
HER2- EBC patients in the WCH cohort were used to 
generate at least one representative tumor section for per 
patient, resulting in a total of 1304 slides. These slides 
were scanned at 40× magnification using a UNIC digital 
pathology scanner (PRECICE 600 series). Tumor regions 
of interest (ROIs) on all WSIs were manually annotated 
by a professional pathologist using ASAP software ver-
sion 1.8 (available at  h t t p  s : /  / g i t  h u  b . c  o m /  c o m p  u t  a t i  o n a  l p 
a t  h o  l o g  y g r  o u p /  A S  A P / r e l e a s e s). All WSIs from the WCH 
and TCGA cohorts were segmented into non-overlap-
ping tiles of varying sizes to meet the requirements of 
the respective feature encoders. Specifically, CTransPath 
utilized tiles at 10× magnification with a resolution of 
224 × 224 pixels, CONCH required tiles at 20× magni-
fication with a resolution of 448 × 448 pixels, REMEDIS 
employed tiles at 20× magnification with a resolution of 
224 × 224 pixels, and UNI used tiles at 20× magnification 
with a resolution of 256 × 256 pixels.

Deep learning methods
We developed two pipelines, ACMIL-based and CLAM-
based, for training and validating deep learning models. 
The recurrence status of patients was used as the training 
label for the deep learning models to derive recurrence 
risk scores for HR+/HER2- EBC patients. Both pipelines 
employed pretrained tissue-specific encoders, including 
CTransPath (an SSL algorithm based on MoCo v3) [9], 
CONCH (a vision-language foundation model pretrained 
on diverse tissue pathology images and biomedical texts) 
[10], REMEDIS (combining large-scale supervised trans-
fer learning with natural images and intermediate con-
trastive self-supervised learning for medical images) 
[11], UNI (an SSL algorithm based on DINOv2) [12], 
and Virchow (also an SSL algorithm based on DINOv2) 
[13]. These encoders transformed tiles into feature vec-
tors, which were then aggregated into a bag for each WSI. 
Patient-level recurrence risk scores were predicted using 
multiple-branch attention mechanism-based ACMIL 
[14] and gated attention mechanism-based CLAM [15], 
ultimately generating risk score outputs. All experiments 
were conducted at the patient-level, utilizing a five-fold 
cross-validation approach. The WCH cohort was ran-
domly into training, validation and test sets with a final 
patient-level ratio of 7:1:2. The TCGA cohort served as 
an external validation set. Given that the data included 

https://github.com/computationalpathologygroup/ASAP/releases
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manually annotated tumor regions, four deep learn-
ing models (ACMIL-based, Roi-ACMIL-based, CLAM-
based and Roi-CLAM-based) were trained in this study.

Visualization and interpretability
To gain insights into the WSI-based risk scores and the 
internal predictive patterns of the models, we visual-
ized the spatial distribution of attention and predictive 
scores using heatmaps. These heatmaps highlighted the 
tiles (top tiles) with the highest attention-weighted pre-
dictive scores. Attention heatmaps were generated for 
all patients in the test set to reveal the regions focused 
on by the models during prediction. Additionally, we 
analyzed the underlying features of the top 20 tiles. For 
deeper insights, we also provided weight-score heatmaps 
and identified top tiles for the four most representative 
patients with the highest risk scores as determined by 
deep learning model. Attention heatmaps visualize the 
image regions focused on by the model during predic-
tion, while weight-score heatmaps display the relative 
importance of different areas within the image. Top tiles 
represent the specific regions with the most significant 
influence on the model’s predictive performance. To 
explore the biological characteristics associated with the 
WSI-based risk score, transcriptomic sequencing data 
from 99 mRNA-sequencing samples in the WCH cohort 
were analyzed. Differentially expressed genes (DEGs) 

between high-risk and low-risk groups were identi-
fied using the edgeR package in R, followed by gene set 
enrichment analysis (GSEA) on these DEGs. Further-
more, we assessed the relationship between the WSI-
based risk score and immune infiltration by calculating 
tumor-infiltrating immune cell scores using the CIBER-
SORT algorithm.

Results
Development and performance evaluation of deep 
learning pipelines based on attention mechanisms
We developed two deep learning pipelines: CTP-ACMIL, 
which combines CTransPath as the feature encoder 
with ACMIL for downstream feature aggregation, and 
CTP-CLAM, which integrates CTransPath with the 
CLAM feature aggregation algorithm. The ACMIL-
based pipeline is illustrated in Fig. 1. For model develop-
ment, we performed five-fold cross-validation on data 
from 1,095  HR+/HER2- EBC patients. The final data-
set included 1034 WSIs, as some patients had multiple 
slides, with complete clinical and pathological informa-
tion available for only 968 patients. The clinicopatho-
logical characteristics of all patients are summarized in 
Table  1, with their distribution across folds (fold 0-fold 
4) detailed in Table  1, Table S2 and Table S3. Although 
recent advancements in deep learning have enabled tasks 
without the need for manual ROI annotations, this study 

Fig. 1 Deep learning pipeline for predicting recurrence risk following adjuvant C-ET in HR+/HER2- EBC. (A) WSIs with manually annotated tumor regions 
were divided into nonoverlapping 224 × 224 pixel tiles at 10× magnification. (B) Features were extracted from each tile using a self-supervised feature 
encoder CTransPath, resulting in 768-dimensional vector features. (C) Patient-level recurrence risk prediction was achieved by aggregating all feature vec-
tors from each WSI into a bag using the multiple branch attention mechanism-based ACMIL, resulting in the generation of the final risk score output. (D) 
The model was trained to classify prognostic outcomes for WSIs, assigning attention scores to each tile. Attention heatmaps showed the attention scores 
assigned by the model to each tile for predicting patient recurrence, with blue indicating low attention and red indicating high attention. (E) Patients 
were categorized into high risk and low risk groups based on the median risk score from the training set, which served as the threshold for classification. 
These groups were then utilized for subsequent survival analysis. C-ET, chemo-endocrine therapy; EBC, early breast cancer; WSIs, whole slide images
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compared model performance with and without manu-
ally annotated ROIs. Both models accurately predicted 
recurrence risk in HR+/HER2- EBC from unannotated 
WSIs, achieving high performance. The AUC values in 
the five-fold cross-validation test sets were 0.81 ± 0.02 
for CTP-ACMIL and 0.80 ± 0.02 for CTP-CLAM. When 
incorporating manually annotated ROIs, the aver-
age AUCs were 0.82 ± 0.02 for RoiCTP-ACMIL and 
0.78 ± 0.03 for RoiCTP-CLAM. Additional performance 
metrics, including accuracy, precision, recall, and F1 
score showed similar trends to the AUC values (Fig. 2A).

A comprehensive assessment of the model perfor-
mance metrics revealed that RoiCTP-ACMIL dem-
onstrated superior predictive performance (Fig.  2A). 
Consequently, we selected the model trained on the 
ROI-containing WSI dataset using the ACMIL algo-
rithm as our final recurrence risk prediction model. The 
RoiCTP-ACMIL model achieved AUC values of 0.84 
(95% CI: 0.77-0.84), 0.81 (95% CI: 0.77-0.84), 0.80 (95% 
CI: 0.77-0.84), 0.81 (95% CI: 0.77-0.84), and 0.85 (95% CI: 
0.77-0.84) across the five-fold cross-validation test sets 
(Fig. 2C). Detailed AUC values with corresponding 95% 
confidence intervals for the validation sets are also pre-
sented in Fig. 2B. WSI-based risk scores were generated 
for all 1,095 HR+/HER2- EBC patients using the test sets 
from the five-fold cross-validation process. An analysis of 
the distribution of the WSI-based risk scores and recur-
rence status indicated that patients with higher scores 
generally had a higher recurrence rate compared to those 
with lower scores (Fig. 2D). Patients were further strati-
fied into high- and low-risk groups based on the median 
WSI-based risk score derived from the training set. 
Kaplan-Meier survival analysis revealed that the high-
risk group had significantly poorer RFS compared to the 
low-risk group in both test and validation sets across the 
five-fold cross-validation (Fig.  2E-F). Similarly, OS was 
worse in the high-risk group compared to the low-risk 
group (Figure S2).

Impact of different feature encoders on the performance 
of deep learning models
To further evaluate the impact of different feature 
encoders on the performance of deep learning models, 
we compared the performance of five feature encod-
ers—CTransPath, UNI, CONCH, Virchow, and REME-
DIS—within the ACMIL and CLAM models. Model 
performance was assessed using four metrics: AUC, 
accuracy, F1-score, and recall. In the five-fold cross-
validation results on the test of the WCH cohort, all five 
feature encoders exhibited satisfactory performance in 
both the ACMIL and CLAM models, with AUC values 
ranging from 0.75 ± 0.08 to 0.86 ± 0.02 (Fig. 3A). Further 
analysis revealed that, except for Virchow, the remain-
ing four feature encoders exhibited a consistent trend 
of better performance in ACMIL compared to CLAM, 
as indicated by the AUC metric. Notably, UNI showed 
the most significant improvement, with ACMIL out-
performing CLAM by up to 7%. Similarly, for the accu-
racy metric, ACMIL consistently outperformed CLAM 
across all feature encoders, with UNI achieving the larg-
est improvement of 13%. Additionally, within the ACMIL 
model, the UNI encoder exhibited superior performance 
across multiple evaluation metrics compared to the 
other encoders (Fig.  3A). The average C-index values 
for the UNI encoder were 0.828 ± 0.006 in the training 

Table 1 Clinicopathological characteristics of patients and the 
distribution of characteristics across the training, validation, and 
test sets in fold 0
Characteristic N = 968 Fold 0

Training
N = 660

Validation
N = 111

Test
N = 197

Age
 Mean ± SD 49 ± 9 49 ± 9 49 ± 9 48 ± 9
Tumor size
 ≤ 2 cm 414 (43%) 277 (42%) 57 (51%) 80 (41%)
 > 2 cm 554 (57%) 383 (58%) 54 (49%) 117 (59%)
LN
 0 410 (42%) 286 (43%) 40 (36%) 84 (43%)
 1 ~ 3 364 (38%) 243 (37%) 43 (39%) 78 (40%)
 ≥ 4 194 (20%) 131 (20%) 28 (25%) 35 (18%)
Clinical stage
 I 203 (21%) 145 (22%) 22 (20%) 36 (18%)
 II 564 (58%) 379 (57%) 60 (54%) 125 (63%)
 III 201 (21%) 136 (21%) 29 (26%) 36 (18%)
Grade
 1 39 (4.0%) 25 (3.8%) 3 (2.7%) 11 (5.6%)
 2 554 (57%) 390 (59%) 54 (49%) 110 (56%)
 3 375 (39%) 245 (37%) 54 (49%) 76 (39%)
LVI
 0 886 (92%) 609 (92%) 100 (90%) 177 (90%)
 1 82 (8.5%) 51 (7.7%) 11 (9.9%) 20 (10%)
ER
 Mean ± SD 0.82 ± 0.17 0.83 ± 0.16 0.81 ± 0.19 0.81 ± 0.18
PR
 Mean ± SD 0.60 ± 0.32 0.61 ± 0.32 0.56 ± 0.34 0.60 ± 0.33
HER2
 0 263 (27%) 172 (26%) 33 (30%) 58 (29%)
 1 705 (73%) 488 (74%) 78 (70%) 139 (71%)
Ki67
 Mean ± SD 0.26 ± 0.17 0.26 ± 0.18 0.26 ± 0.16 0.28 ± 0.17
Molecular subtype
 0 209 (22%) 159 (24%) 23 (21%) 27 (14%)
 1 759 (78%) 501 (76%) 88 (79%) 170 (86%)
RFS status
 No recurrence 838 (87%) 579 (88%) 90 (81%) 169 (86%)
 Recurrence 130 (13%) 81 (12%) 21 (19%) 28 (14%)
LN, lymph node; LVI: lymphatic vessel infiltration; ER, estrogen receptor; PR, 
progesterone receptor; HER2, human epidermal growth factor receptor; RFS, 
recurrence-free survival
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set, 0.818 ± 0.015 in the validation set, and 0.837 ± 0.023 
in the test set (Table S4). Model performance was also 
evaluated on the TCGA cohort. The results showed that 
CTransPath demonstrated poor performance across all 
metrics in both the ACMIL and CLAM models, with 
AUC values of 0.54 ± 0.03 and 0.54 ± 0.04, respectively. 
In contrast, the other four feature encoders significantly 
outperformed CTransPath, achieving AUC values as high 
as 0.84 ± 0.03 (Fig. 3B).

In the heatmaps of WSI-based risk scores generated by 
the UNI feature encoder, we observed a pattern similar 
to that of the CTransPath feature encoder: patients with 
higher scores generally exhibited higher recurrence rates 
compared to those with lower scores (Fig. 3C). Addition-
ally, WSI-based risk scores derived from the UNI feature 
encoder demonstrated a higher hazard ratio (HR) for 
risk stratification of RFS in HR+/HER2- EBC patients 

compared to those derived from the CTransPath feature 
encoder across five-fold cross-validation. The HR values 
for each fold were as follows (UNI vs. CTransPath): fold 
0: 9.73 vs. 7.55; fold 1: 15.16 vs. 7.56; fold 2: 5.32 vs. 4.79; 
fold 3: 12.88 vs. 4.27; and fold 4: 8.52 vs. 7.33 (Figs.  2E 
and 3D-H).

Additional survival analyses were conducted for patient 
subgroups defined by distinct clinicopathological vari-
ables using the WSI-based risk score. In line with recent 
recommendations to administer CDK4/6 inhibitors to 
high-risk HR+/HER2- EBC patients, we re-stratified 
patients from cohorts 1 and 2 of the monarchE study. 
Cohort 1 included patients with ≥ 4 positive axillary 
lymph nodes or 1-3 positive axillary lymph nodes with a 
tumor size ≥ 5 cm or histological grade 3, while cohort 2 
included patients with 1-3 positive axillary lymph nodes, 
tumor size < 5  cm, histological grade < 3, and a Ki67 

Fig. 2 Evaluation of deep learning model performance and Kaplan-Meier analysis of WSI-based risk score. (A). Performance metrics (AUC, accuracy, preci-
sion, recall, and F1 score) of the four deep learning models: CTP-ACMIL, RoiCTP-ACMIL, CTP-CLAM and RoiCTP-CLAM. (B-C). ROC curves for recurrence 
risk score of the RoiCTP-ACMIL model in 5-fold cross-validation. (D). Heatmap distribution of WSI-based risk score and patient recurrence status for the 
RoiCTP-ACMIL model. (E-F). Kaplan-Meier curves for RFS in the validation set and test set. HR and 95% CI were calculated using the Cox proportional 
hazards model. P values were calculated using the log-rank test. WSI, whole slide image; RFS, recurrence-free survival
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index ≥ 20%. Subgroup analyses of the test set, stratified 
by pathological variables (e.g., Ki67 index, histologi-
cal grade, and molecular subtype) and clinical variables 
(e.g., staging, risk stratification, and clinical trial cohorts), 
demonstrated that WSI-based risk scores effectively 
facilitated risk re-stratification within these subgroups 
(Figure S3-S7).

Interpretability analysis of deep learning model
We generated attention weight-score heatmaps and 
selected the top 20 tiles for all patients in the test set to 
analyze their underlying features. Upon examination by 
a professional pathologist, the top tiles in the high-risk 
group were predominantly characterized by cord-like or 
sheet-like arrangements of tumor cells with large nuclei, 
prominent nucleoli, and vacuolated or hyperchromatic 
nuclei appearances. Additionally, high-density stromal 
regions with large nuclei and spindle-shaped cells, along 
with areas exhibiting minimal lymphocyte infiltration, 
were identified as key areas of focus. Figure  4 presents 

four representative heatmaps along with their corre-
sponding tiles, derived from the patients with the highest 
WSI-based risk scores in the test set of the deep learn-
ing model. For each patient, six of the most representa-
tive tiles were selected from the top 20 tiles ranked by 
attention weights. These high-attention tiles highlight the 
model’s capability to identify high-risk regions. Bioinfor-
matics analysis of transcriptomic data from 99 patients in 
the WCH cohort identified 150 DEGs between the high-
risk and low-risk groups (Figure S8A). GSEA revealed 
that these DEGs were significantly enriched in four path-
ways: IFN-α response, IFN-γ response, allograft rejec-
tion, and KRAS signaling (down regulated) (Figure S8B). 
Additionally, CIBERSORT analysis indicated that the 
high-risk group exhibited lower proportions of T cells 
gamma delta (P < 0.01) compared to the low-risk group, 
while monocytes were more abundant in the high-risk 
group (P = 0.02) (Figure S8C-D). No statistically signifi-
cant differences were observed in other immune-related 
cells types between the two groups.

Fig. 3 Comparison of the impact of different feature encoders on deep learning model performance and Kaplan-Meier analysis of WSI-based risk score. 
(A-B). Performance metrics (AUC, accuracy, recall, and F1 score) of five feature encoders (CTransPath, UNI, CONCH, Virchow, and REMEDIS) in the ACMIL-
Based deep learning model for the WCH and TCGA cohorts. (C). Heatmap distribution of WSI-based risk score and patient recurrence status for the UNI-
ACMIL model. (D-H). Kaplan-Meier curves for RFS in the test set. HR and 95% CI were calculated using the Cox proportional hazards model. P values were 
calculated using the log-rank test. WSI, whole slide image; RFS, recurrence-free survival
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Model integration of WSI-based risk score and 
clinicopathological features
To evaluate whether the WSI-based risk score serves as 
an independent prognostic factor for predicting RFS in 
HR+/HER2- EBC, we performed a multivariable Cox 
regression analysis. This analysis included 968 patients 
with complete clinicopathological data, adjusting for rel-
evant clinicopathological variables. The results confirmed 
that the WSI-based risk score serves as an independent 
prognostic factor, whether analyzed as a categorical or 
continuous variable, across five-fold cross-validation 
(Fig.  5, Figure S9). Building on these results, we devel-
oped an 11-dimensional feature set by integrating the 
WSI-based risk score with clinicopathological param-
eters to construct multimodal recurrence risk prediction 

models. These models were developed using CPH, EN-
Cox, GBRT, Lasso-Cox, Ridge-Cox, and RSF.

Given the limited number of HR+/HER2- EBC patients 
with complete clinical information (n = 968), we com-
bined the training and validation sets from the deep 
learning five-fold cross-validation to form the machine 
learning training set, with the deep learning test set 
serving as the machine learning test set. The multi-
modal GBRT model exhibited superior predictive per-
formance. In the test set, the AUC values for 3-, 5-, and 
7-year predictions were 0.875 ± 0.037, 0.864 ± 0.031, and 
0.866 ± 0.029, respectively. Other multimodal models 
also achieved robust performance, with AUC values con-
sistently exceeding 0.8 across all time points (Fig.  6A). 
Due to its consistently high predictive performance, the 

Fig. 4 Visualization of the top 4 representative cases with the highest risk scores based on the UNI-ACMIL model. In each case, images with black bor-
ders display the images of the manually annotated tumor regions (upper left), and the attention weight score heatmaps (lower left). The colors of the 
heatmaps correspond to the attention scores of tiles within the WSI, with red indicating tiles that have a significant impact on the model’s prediction 
and blue indicating tiles with a smaller impact. The images with red borders display six representative tiles from the top 20 tiles. WSI, whole slide image
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GBRT model was selected as the final prediction model. 
Further analysis revealed that the predictive performance 
of the WSI-based risk score alone surpassed that of clini-
copathological features alone. In the test set, the AUC 
values for the WSI-based risk score were 0.840 ± 0.033 
(3-year), 0.814 ± 0.078 (5-year), and 0.826 ± 0.066 (7-year), 
compared to 0.684 ± 0.064 (3-year), 0.650 ± 0.062 (5-year), 
and 0.641 ± 0.048 (7-year) for clinicopathological features 
(Fig.  6B). Moreover, the multimodal prediction model 
that combined the WSI-based risk score with clinico-
pathological features achieved average AUC improve-
ments of 19.1%, 21.4%, and 22.5% for 3-, 5-, and 7-year 
predictions, respectively, compared to models relying 
solely on clinicopathological features (Fig. 6B).

To elucidate how the multimodal recurrence risk pre-
diction model predicts recurrence in HR+/HER2- EBC 
patients, we utilized SHapley Additive exPlanations 
(SHAP) values to clarify the impact of each feature vari-
able on the prediction models. Feature importance 
rankings from the SHAP summary plots of six different 
multimodal recurrence risk prediction models revealed 

that the WSI-based risk score was the most significant 
contributor across all models (Fig.  6C-H; additional 
results for another four folds were shown in Figure S11-
S14). Among the other top five contributing variables 
were lymph node (LN) status, progesterone receptor 
(PR) status, histological grade, and HER2 status. Addi-
tionally, SHAP dependency analysis was used to explore 
how individual feature variables influence the outcomes 
of different predictive models (Figure S10-S14). A higher 
SHAP value for a feature variable indicates a greater like-
lihood of recurrence in HR+/HER2- EBC patients fol-
lowing adjuvant C-ET. For instance, in different models, 
a lower value of the WSI-based risk score corresponded 
to a negative SHAP value, which was associated with a 
reduced recurrence risk Conversely, a higher value of the 
WSI-based risk score corresponded to a positive SHAP 
value, indicating a stronger influence on the prediction of 
recurrence risk in HR+/HER2- EBC patients.

To enhance clinical utility, we developed a recurrence 
prediction tool for HR+/HER2- EBC patients undergo-
ing adjuvant C-ET in the form of a nomogram (Fig.  7, 

Fig. 5 Forest plot of multivariate Cox regression analysis. (A) Multivariate Cox regression analysis of WSI-based risk score as a continuous variable and 
clinicalpathological features for RFS. (B) Multivariate Cox regression analysis of WSI-based risk score as a categorical variable and clinicalpathological 
features for RFS in fold 0. WSI, whole slide image; RFS, recurrence-free survival. LN, lymph node; LVI: lymphatic vessel infiltration; ER, estrogen receptor; PR, 
progesterone receptor; HER2, human epidermal growth factor receptor
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Figure S15). The nomogram was constructed using the 
top five feature variables identified by feature importance 
ranking across the six models (WSI-based risk score, LN 
status, PR, histological grade and HER2 status). Each fea-
ture variable in the nomogram is associated with a score, 
and the total score, calculated by summing the individual 
scores for all feature variables, represents the predicted 
recurrence risk for HR+/HER2- EBC patients.

Discussion
In recent years, there has been a trend towards emphasiz-
ing de-escalated treatments in adjuvant therapy for HR+/
HER2- EBC, supported by studies demonstrating the 
feasibility of exempting chemotherapy for certain HR+/

HER2- breast cancer patients [16, 17]. However, approxi-
mately 20% of HR+/HER2- EBC patients still experi-
ence recurrence despite undergoing adjuvant C-ET [2]. 
With the advent of new treatment regimens, accurately 
predicting the recurrence risk in these patients is essen-
tial for optimizing therapeutic strategies and identifying 
candidates who may benefit from more tailored treat-
ment approaches. In this study, we developed two deep 
learning pipelines (ACMIL-based and CLAM-based) 
that integrate multi-instance learning frameworks with 
tissue-specific feature encoders to accurately predict 
recurrence risk in HR+/HER2- EBC patients undergo-
ing adjuvant C-ET. Our results demonstrate that the 

Fig. 6 Integrating WSI-based risk score and clinicalpathological factors to construct a multimodal recurrence risk prediction model. (A-B). Comparison 
of AUC among different multimodal recurrence risk prediction models. (C-H). SHAP summary plots for machine learning models in fold 0-4. Importance 
matrices and SHAP summary plots illustrated the contribution of feature variables to different models.WSI, whole slide image; LN, lymph node; LVI: lym-
phatic vessel infiltration; ER, estrogen receptor; PR, progesterone receptor; HER2, human epidermal growth factor receptor
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proposed multimodal prediction model offers significant 
advantages in both technical performance and clinical 
utility.

First, regarding the selection of feature encoders, we 
systematically evaluated the performance of five pre-
trained feature encoders (CTransPath [9], CONCH [10], 
UNI [12], REMEDIS [11], and Virchow [13]). Although 
all these models achieved high predictive performance, 
the UNI encoder consistently outperformed the oth-
ers across multiple metrics, including AUC, accuracy, 
recall, and F1 score, particularly within the ACMIL 
pipeline. This finding underscores the critical role of 
feature encoder selection in enabling the model to effec-
tively capture tissue-specific features and manage the 
complexity of pathological images. The DINOv2-based 
self-supervised learning method employed by UNI dem-
onstrated unique advantages in feature diversity, suggest-
ing that future improvements in feature encoders could 

benefit from advanced training strategies such as con-
trastive learning or other self-supervised approaches. 
Furthermore, the compatibility between feature encod-
ers and downstream models emerged as a crucial factor. 
Selecting appropriate feature encoders is essential for 
optimizing the overall performance of the model.

In the evaluation of deep learning pipeline perfor-
mance, the UNI-ACMIL pipeline demonstrated excep-
tional predictive capability, achieving AUCs of 0.86 ± 0.02 
in five-fold cross-validation test sets and 0.80 ± 0.04 
in external validation. Existing WSI-based prognostic 
models for HR+/HER2- breast cancer primarily focus 
on recurrence risk prediction using OncotypeDX scores 
[18–20]. For example, Howard et al. reported an AUC of 
0.798 for deep learning-based pathological models and 
0.828 for models integrating clinical and pathological 
features [18]. In addition, the recently published TITAN 
model from the Harvard group achieved a C-index of 

Fig. 7 Representative nomogram for predicting recurrence risk in HR+/HER2- EBC patients undergoing adjuvant C-ET based on WSI-based risk score, LN 
status, LIV status, PR and HER2 in fold 0. EBC, early breast cancer; C-ET, chemo-endocrine therapy; WSI, whole slide image, LN, lymph node; LVI: lymphatic 
vessel infiltration; PR, progesterone receptor; HER2, human epidermal growth factor receptor
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0.757 ± 0.015 for survival prediction across all breast can-
cer subtypes [21]. In comparison, our model achieved 
a C-index of 0.837 ± 0.023 for HR+/HER2- EBC in the 
WCH cohort, demonstrating superior performance. 
Moreover, incorporating manually annotated ROIs fur-
ther enhanced model outcomes, indicating that precise 
tumor region annotation plays a vital role in extracting 
critical features and improving predictive accuracy. How-
ever, manual annotation is labor-intensive and subject to 
variability, underscoring the need for automated annota-
tion tools to reduce human intervention, improve consis-
tency, and facilitate large-scale multicenter studies.

From a clinical perspective, the multimodal predic-
tion model in this study, which combines WSI-based 
risk scores with clinicopathological features, provided 
accurate recurrence risk assessment. The high prognos-
tic value of the multimodal model was demonstrated 
in the five-fold cross-validation test sets, with AUCs of 
0.875 ± 0.037, 0.864 ± 0.031, and 0.866 ± 0.029 for recur-
rence prediction at 3-, 5-, and 7-years, respectively. 
Compared to models relying solely on clinicopathologi-
cal features, the multimodal model improved prediction 
performance by 19.1-22.5%. Additionally, SHAP analy-
sis consistently identified the WSI-based risk score as 
the most significant variable across all models, further 
emphasizing its clinical relevance.

This study identified the pathological and molecular 
characteristics of high-risk patients through an inte-
grated analysis of morphological features from patho-
logical slides and patient transcriptomic data. WSIs from 
high-risk patients exhibited cord-like or sheet-like distri-
butions of tumor cells with prominent nucleoli, enlarged 
nuclei, and chromatin condensation. Immune microenvi-
ronment analysis revealed lower proportions of gamma-
delta T cells and higher proportions of monocytes in 
high-risk patients, indicating that the immune micro-
environment plays a crucial role in tumor recurrence 
[22–24]. GSEA revealed that differentially expressed 
genes in high-risk patients were significantly enriched in 
pathways such as IFN-α/γ response, transplant rejection, 
and KRAS signaling, which may contribute to recurrence 
mechanisms.

Despite the promising potential demonstrated by this 
study, several limitations must be addressed. First, the 
patient cohort primarily consisted of single-center data. 
Although external validation results were favorable, 
multicenter studies with larger sample sizes are neces-
sary to assess the model’s generalizability. Second, while 
the WSI-based risk score was the most significant con-
tributor to the multimodal model, its underlying bio-
logical mechanisms and interactions with other clinical 
features require further exploration. Future research 
should focus on integrating advanced deep learning tech-
niques, such as UNet or DeepLab, to enable automated, 

high-precision tumor region annotation. Additionally, 
investigating the model’s potential applications in clini-
cal decision-making, such as guiding the use of CDK4/6 
inhibitors [25–27] or other targeted therapies, would fur-
ther enhance its utility.

In conclusion, the proposed deep learning-based 
recurrence risk prediction model demonstrates signifi-
cant clinical potential for HR+/HER2- EBC patients. By 
integrating multimodal data, the model substantially 
improves predictive performance, offering a novel tool 
for personalized treatment and precision medicine. Fur-
ther optimization of feature encoders and interpretability 
will promote the broader adoption of deep learning tech-
nologies in pathological image analysis and advance the 
field of precision oncology.
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