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Abstract
Background Breast cancer, which is the most prevalent form of cancer among women globally, encompasses 
various subtypes that demand distinct treatment approaches. The tumor microenvironment and immune response 
are of crucial significance in the development and progression of breast cancer. Nevertheless, there has been scant 
evidence concerning the genes within breast cancer - specific immune cells.

Methods We utilized summary data-based Mendelian randomization (SMR) to identify genes associated with breast 
cancer by utilizing expression quantitative trait loci (eQTL) datasets for 14 different immune cell types and genome-
wide association studies (GWAS) for overall breast cancer and its subtypes. Furthermore, colocalization analysis was 
carried out to evaluate whether the observed association in SMR analyses is influenced by the same causal variant. 
Replication analysis and bulk RNA sequencing (bulkRNA-seq) analysis were employed to validate promising immune 
genes as potential drug targets.

Results After correcting for the rate of false discovery, we discovered a total of 17 genes in 9 immune cell types 
that were significantly associated with overall breast cancer and its subtypes. The genes KCNN4, L3MBTL3, ZBTB38, 
MDM4, and TNFSF10 were identified in overall breast cancer and its subtypes. Colocalization analyses provided robust 
evidence in support of these associations. Notably, the KCNN4 gene in non-classical MONOcytes (MONOnc) was 
further validated through replication analysis and bulkRNA-seq analysis.
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Introduction
Breast cancer stands as the prevailing malignancy among 
women and the primary cause of cancer-related mortal-
ity, with a staggering 665,684 deaths in 2022 [1]. From 
a comprehensive clinical perspective [2], there are four 
subtypes of breast cancer requiring different treatment 
approaches: triple-negative, hormone receptor-negative 
and human epidermal growth factor receptor 2 (HER2)-
positive, hormone receptor-positive and HER2-positive, 
hormone receptor-positive and HER2-negative breast 
cancer. Recent research has shown that breast cancer 
consists not only tumor cells, but also involves significant 
changes in the tumor microenvironment. These changes 
are now acknowledged as pivotal contributors to breast 
cancer initiation, advancement, and potential therapeutic 
targets [3]. The tumor microenvironment incorporates 
immune cells, soluble factors, and altered extracellu-
lar matrix. Harris et al. [4] found that women who took 
anti-inflammatory drugs twice a week or more for more 
than five years exhibited a 21% reduced risk of develop-
ing breast cancer, suggesting that it may be possible to 
mitigate breast cancer risk by regulating the function of 
immune cells. In addition, more evidence points out that 
strong infiltration of immune cells is often an indicator of 
chemotherapy response and positive prognosis of breast 
cancer [5, 6].

The immune system is generally categorized into two 
major components: innate immunity and acquired (or 
adaptive) immunity [7]. The innate immune system 
comprises various cell types, including phagocytes, neu-
trophils, macrophages, natural killer cells, basophils, 
eosinophils, and more. Adaptive immunity includes B 
and T cells [8]. Traditionally, breast cancer has been 
regarded as immunosilent, and characterized by lower 
tumor mutation burden (TMB) and immunogenicity 
compared to other tumor types. Studies indicate that 
36% of basal-like tumors are classified with high TMB 
[9]. However, among these high-TMB tumors, only 24% 
exhibit significant immune invasion. These findings 
imply that only a minority of these tumors exhibit sig-
nificant immunogenicity [9]. In addition, the immunoge-
nicity of breast cancer exhibits significant heterogeneity, 
with distinct subtypes showing varying levels of immune 
infiltration [10]. However, precise gene expression in 
specific immune cells that influence the development of 
breast cancer and different subtypes has not been fully 
elucidated.

Mendelian randomization (MR) uses genetic variation 
as an instrumental variable to examine the causal influ-
ence of risk factors on health outcomes [11]. The instru-
mental variable (IV) method is put forth as an alternative 
statistical method to examine causality for expose-out-
come associations while controlling for confounding fac-
tors [12]. Therefore, to better understand whether gene 
expression in different immune cell types influences 
breast cancer, we used pooled data to identify potential 
associations based on summary data-based Mendelian 
randomization (SMR).

Methods
This Mendelian randomization study utilized expressed 
quantitative trait loci (eQTL) data from Yazar et al. [13], 
and the genome-wide association study (GWAS) from 
the Breast Cancer Association Consortium (BCAC) [14] 
to explore the potential causal association between gene 
expression in specific immune cells and breast cancer. 
GWAS data from the FinnGen consortium was further 
employed to validate the observed findings. In addition, 
we performed differential gene expression analysis using 
the Bulk RNA sequencing (bulkRNA-seq) database to 
identify genes differentially expressed in breast cancer 
tissue. An overview of the study design is shown in Fig. 1.

Data sources for exposure
The eQTL data utilized in this study were obtained 
from the OneK1K cohort, as presented in the Yazar 
et al. article [13]. The cohort for this study consisted 
of 1.27  million peripheral blood mononuclear cells 
(PBMCs) obtained from 982 donors, with single-cell 
RNA sequencing (scRNA-seq) data utilized for analysis. 
The study identified 26,597 independent cis-eQTLs from 
14 different immune cell types, including CD4 + primary 
and central memory T cells (CD4NC), CD4 + T cells 
with effector memory or central memory phenotype 
(CD4ET), SOX4-expressing CD4 + T cells (CD4SOX4), 
and CD8 + T cells with effector memory phenotype 
(CD8ET). CD8 + infantilistic and central memory T cells 
(CD8NC), CD8 + expressing S100B T cells (CD8S100B), 
natural killer cells (NK), NK recruitment cells (NKR), 
Plasma cells, memory B cells (Bmem), immature and 
naive B cells (Bin), classical MONOcytes (MONOc), 
non-classical MONOcytes (MONOnc), and dendritic 
cells (DC).

Conclusion In summary, our research has revealed a repertoire of genes within diverse immune cells associated with 
breast cancer. KCNN4 gene in non-classical MONOcytes (MONOnc) exhibited a negative association with overall breast 
cancer and its subtypes, which was identified as a potential drug target for breast cancer, opening up new avenues for 
therapeutic interventions.

Keywords Breast cancer, Immune cell, Mendelian randomization, BulkRNA-seq, scRNA-seq, Drug target
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Data sources for the outcome
The Breast Cancer Association Consortium (BCAC) pro-
vided the largest available genome-wide association study 
(GWAS) summary data for breast cancer [14], This data-
set includes a substantial number of cases (133,384) and 
controls (113,789), as well as 18,908 individuals of Euro-
pean ancestry with BRCA1 mutations from the Consor-
tium of Investigators of Modifiers of BRCA1/2 (CIMBA). 
Apart from studying overall breast cancer risk, BCAC 
also investigates subtype-specific characteristics. Breast 
cancer can be classified into different subtypes based on 
the presence or absence of hormone receptors (estrogen 
receptor (ER) and progesterone receptor (PR)), human 
epidermal growth factor receptor 2 (HER2) status, and 
tumor grade. The subtypes include luminal A-like (Lumi-
nal A), luminal B-like (Luminal B), luminal B/HER2-
negative-like (Luminal B HER2Neg), HER2-enriched-like 
(HER2 Enriched), and triple-negative or basal-like (Triple 
Negative). In order to enhance the sensitivity for detect-
ing associations with triple-negative subtypes, Zhang et 
al. [14] performed a meta-analysis of BCAC triple-nega-
tive cases and CIMBA BRCA1 mutation carriers, hereaf-
ter referred to as the BRCA-TN subtype.

In the replication analysis, we obtained published 
GWAS from the FinnGen Consortium for 18,786 breast 

cancer patients and 182,927 controls. The FinnGen study, 
a large-scale genomics initiative, has comprehensively 
examined more than 500,000 samples sourced from the 
Finnish biobank. This collaborative project encompasses 
research biobanks in Finland, various organizations, and 
international industry partners.

Data sources for bulk RNA sequencing data
We obtained microarray sequencing data GSE162228 
from the Gene Expression Omnibus (GEO)  (   h t  t p s  : / / 
w  w w  . n c b i . n l m . n i h . g o v / g e o /     ) . UCSC Xena is an  i n t e g r 
a t e d website that aggregates bulk RNA-seq data from 
various cancer databases (http://xena.ucsc.edu/). We 
downloaded the breast cancer cohort from the GDC, 
the Cancer Genome Atlas (TCGA) Breast Cancer data-
set, which includes 1,104 breast tumor samples and 113 
normal breast tissue samples. Additionally, we used the 
Genotype-Tissue Expression (GTEx) database, which 
contains 179 normal breast tissue samples.

Selection of genetic instruments
In the SMR analysis, cis-eQTL genetic variants were 
utilized as instrumental variables (IVs) to assess gene 
expression. The cis region was defined as a 2  MB dis-
tance from the probe in both directions. Only genes with 

Fig. 1 Summary of study design, methods of analysis, and critical process. SMR, summary data-based Mendelian randomization; eQTL, expression quanti-
tative trait loci; HEIDI test, heterogeneity in dependent instruments test; PP.H4, the posterior probability of hypothesis 4; GWAS, the genome-wide associa-
tion study; GEO, the Gene Expression Omnibus; TCGA_GTEx, The Cancer Genome Atlas database combined with Genotype-Tissue Expression database
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at least one cis-eQTL having PeQTL <5.0 × 10− 8 were con-
sidered. Furthermore, single nucleotide polymorphisms 
(SNPs) with allele frequency differences greater than 
0.2 between the eQTL data and the GWAS data were 
excluded. We permitted to exclude a maximum of 5% of 
SNPs based on allele frequency differences. The strength 
of the genetic instruments was calculated using the F-sta-
tistic (F-statistic = β2/SE2). If the F-statistic of the genetic 
variable is < 10, it is considered as a weak genetic instru-
ment and is thus excluded. Finally, the top-associated 
SNP with gene expression was selected as the genetic 
instrument. The screening of genetic instruments was 
performed by SMR software (version 1.3.1,  h t t  p s : /  / y a  n g  l 
a b . w e s t l a k e . e d u . c n / s o f t w a r e / s m r / # D o w n l o a d      ) .   

Statistical analyses
Summary data-based mendelian randomization and 
heterogeneity in dependent instrument test
SMR is a statistical approach that combines summary-
level data from GWAS with data from eQTL studies to 
infer potential causal associations between genes and 
outcomes. Detailed methodologies have been previously 
described in the literature [15]. In brief, consider y as the 
outcome, x as the exposure, and z as the instrumental 
variable. By employing the two-step least-squares (2SLS) 
method, we estimate the size of the impact of exposure 
on the results with the formula:

 
bxy =

bzy
bzx

Where bzy  and bzx  represent the least-squares estimates 
of outcome and exposure with respect to the instrumen-
tal variable, bxy  is the effect size of exposure on outcome.

The heterogeneity in dependent instruments (HEIDI) 
test was introduced to examine whether there is a single 
causal variant underlying the association between gene 
expression and a trait. The HEIDI test was performed 
only when the number of SNPs reached or exceeded 
three. Additionally, SNPs that did not meet the criteria, 
such as those exhibiting high linkage disequilibrium (LD) 
(r2 > 0.9) or weak LD (r2 < 0.05), were excluded from the 
analysis. Associations with PHEIDI < 0.05 indicated the 
presence of pleiotropy and were consequently excluded. 
The exclusion of SNPs and the HEIDI test were con-
ducted using “smr” command in SMR software. False 
discovery rate (FDR) correction was applied across all 
immune cell types. The visualizations were generated 
using the online platform  h t t  p s : /  / w w  w .  b i o i n f o r m a t i c s . c o 
m . c n     .  

Colocalization analysis
In order to disentangle the confounding effect of link-
age disequilibrium [16]and examine the concordance 

between genes and breast cancer regarding a shared 
causal variant, we conducted colocalization analysis 
using the “coloc” R package. There are five hypotheses: 
Null hypothesis (H0): absence of a causal variant for 
either genes or breast cancer; Hypothesis 1 (H1): pres-
ence of single causal variant for genes only; Hypothesis 
2 (H2): presence of single causal variant for breast can-
cer only; Hypothesis 3 (H3): presence of two independent 
causal variants for genes and breast cancer; Hypothesis 
4 (H4): presence of a shared causal variant for genes and 
breast cancer. All significant genes of different cell types 
(PSMR < 0.05, PHEIDI > 0.05) were colocalized. The analy-
sis employed default prior probabilities (PP.H1 = 1 × 10− 4, 
PP.H2 = 1 × 10− 4, PP.H3 = 1 × 10− 5). If the posterior prob-
ability for the colocalization hypothesis of H4 exceeds 
80%, it suggests a high likelihood of colocalization 
between the gene and breast cancer.

Evaluate horizontal pleiotropy
To eliminate the effect of horizontal pleiotropy, we exam-
ined the correlations between each instrumental variable 
and all other genes in its vicinity (within a 2 MB window) 
to detect whether there was a significant correlation. 
If the genetic variation was associated with other genes 
and P < 5 × 10− 8, SMR analysis was performed to assess 
the potential association between the expression of those 
genes and the outcome. If the data was insufficient to 
perform SMR analysis, the GWAS Catalog was utilized to 
explore the relationship between the adjacent genes and 
breast cancer. For those adjacent genes that do not meet 
either of these conditions, we believe that horizontal plei-
otropy cannot be ruled out.

Identification of differential genes based on GEO and 
TCGA_GTEx databases
In the differential analysis, we employed the “limma” 
analysis method to identify genes that exhibited dif-
ferential expression between 110 tumor samples and 23 
normal samples obtained from GSE162228. A cutoff of 
P < 0.05 and |log2 fold change (FC)| > 0.5 was applied. 
To further explore the effect of differential gene expres-
sion on breast cancer, we combined the GTEx database 
with the TCGA database to compensate for the limited 
number of normal samples in the TCGA database, form-
ing the TCGA_GTEx database. The batch effect was cor-
rected using the “sva” package. TCGA_GTEx database 
was converted to log2(counts + 1). A Wilcoxon test [17] 
was used for the hypothesis tests, considering a signifi-
cance level of P < 0.05 as statistically significant. Boxplots 
were drawn with the R package “ggpubr”.

Druggable genes identification
To assess the druggability of identified genes for breast 
cancer, we searched the identified gene in DrugBank, 

https://yanglab.westlake.edu.cn/software/smr/#Download
https://yanglab.westlake.edu.cn/software/smr/#Download
https://www.bioinformatics.com.cn
https://www.bioinformatics.com.cn
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Dependency Map, and the ChEMBL databases to identify 
the potential drugs that target this gene. Additionally, we 
conducted thorough searches of PubMed, Embase, Sco-
pus, and Web of Science to review the research on these 
drugs associated with breast cancer.

Data were analyzed using R v4.2.3 and SMR v1.3.1  (   h t  t 
p s  : / / y  a n  g l a b . w e s t l a k e . e d u . c n / s o f t w a r e / s m r / # D o w n l o a d     ) .  

Results
SMR and HEIDI tests
Under a threshold of FDRSMR < 0.05 and PHEIDI > 0.05, 
we identified a total of 116 genes associated with overall 

breast cancer and its subtypes across 14 cell types (Figs. 2 
and 3, Figures S1-S8). Although genes related to breast 
cancer were found in all cells, they were mainly concen-
trated in CD4nc, NKr, CD8et, CD8nc, and CD4et cells. 
The results from SMR and HEIDI are shown in Table 
S1-S14. The top 3 genes associated with overall breast 
cancer were L3MBTL3 in CD4nc (PFDR = 2.11 × 10− 6), 
MRPS18C in CD4nc (PFDR = 3.19 × 10− 6) and KCNN4 in 
MONOnc (PFDR = 3.19 × 10− 6). For Luminal A breast can-
cer, the top 3 notable genes were KCNN4 in MONOnc 
(PFDR = 4.04 × 10− 5), TNNT3 in CD4nc (PFDR = 3.73 × 10− 4), 
SCAMP3 in CD4nc (PFDR = 4.48 × 10− 4). For Triple 

Fig. 3 Manhattan plots of significant results from summary data-based Mendelian randomization in overall breast cancer. A - E represents the associa-
tions between genes and overall breast cancer in CD8s100b, DC, MONOnc, NK and NKr cells, respectively. Black solid line indicates P-value threshold after 
false discovery rate is 0.05

 

Fig. 2 Manhattan plots of significant results from summary data-based Mendelian randomization in overall breast cancer. A - F represents the associa-
tions between genes and overall breast cancer in Bin, Bmem, CD4nc, CD4et, CD8nc and CD8et cells, respectively. Black solid line indicates P-value thresh-
old after false discovery rate is 0.05
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Negative breast cancer, the top 3 significant genes were 
MDM4 in CD4nc (PFDR = 2.50 × 10− 7) and Bin 
(PFDR = 5.78 × 10− 7), RPS18 in Bmem (PFDR = 6.07 × 10− 7). 
The top 3 genes associated with BRCA-TN breast can-
cer were RPS18 in Bmem (PFDR = 6.59 × 10− 9) and CD8nc 
(PFDR = 6.59 × 10− 9), MDM4 in CD4nc (PFDR = 6.59 × 10− 9). 
No significant genes associated with breast cancer were 
found in the remaining subtypes. Table S15 presents sig-
nificant genes related to breast cancer in each specific cell 
type.

Colocalization analysis
Based on the colocalization analysis in overall breast can-
cer and its subtypes (Table S1-S14), we identified a total 
of 39 genes in 14 different cell types that share causal 
variation with breast cancer and its subtypes, with a 
posterior probability more than 80% for the colocaliza-
tion under hypothesis 4 (PP.H4 > 0.8). Specifically, we 
observed 24 genes associated with overall breast cancer 
across 11 immune cell types, 19 genes associated with 
Luminal A breast cancer across 12 immune cell types, 
5 genes associated with Triple-Negative breast cancer 
across 14 immune cell types, and 5 genes associated with 
BRCA-TN breast cancer across 14 immune cell types.

Evaluation of horizontal pleiotropy
After the colocalization analysis, a total of 39 genes were 
included in the subsequent analysis. In order to eliminate 
the influence of horizontal pleiotropy, we extracted adja-
cent genes and tested their correlation with breast can-
cer. Detailed results are shown in Table S16. Finally, we 
found 11 genes related to overall breast cancers, namely 
C4orf32 (in CD4nc, and CD8nc), CDC7 (in CD4nc), 
CTD-3110H11.1 (in CD4nc, and NKr), CTSA (in CD4nc), 
GCHFR (in CD8et), GNAQ (in CD8et), HLA-DOB (in 
CD4nc, and CD8et), KCNN4 (in MONOnc), L3MBTL3 
(in Bin, Beme, CD4nc, CD4et, CD8nc, CD8et,  and 
NKr), RGS19 (in CD4nc), and ZBTB38 (in CD4nc). The 
expression of genes AKAP13 (in CD8et), KCNN4 (in 
MONOnc), L3MBTL3 (in Bin, Beme, CD4nc, CD4et, 
CD8nc, and CD8et), MPRL42 (in CD4nc, and CD8et), 
TNNT3 (in CD4nc), YBEY (in MONOc), and ZBTB38 
(in CD4nc, and CD8et) were associated with Luminal A 
breast cancer. Besides, KCNN4 (in MONOnc), MDM4 

(in Beme, CD4et, and CD8et), TNFSF10 (in CD4nc) were 
related to Triple-Negative and BRCA-TN breast cancer. 
The expression of gene L3MBTL3 in Bin, Beme, CD4nc, 
CD4et, and CD8nc was also associated with BRCA-TN 
breast cancer.

Our conclusion, supported by the evidence from the 
comprehensive analysis mentioned above, is that 17 
genes exhibited causal associations with breast cancer 
and its subtypes in 9 specific immune cell types.

Replication analysis
We conducted the same analysis using GWAS data pro-
vided by the FinnGen Consortium and eQTL data from 
immune cells as described above. After SMR analysis and 
HEIDI test, 73 genes were screened out from 14 immune 
cells. After colocalization analysis, 13 genes were shown 
to have a potential causal relationship with breast can-
cer. By extracting adjacent genes within 2  MB of these 
genes, we finally found causal relationships between the 
expression of genes CNN2, FIBP, and KCNN4 with breast 
cancer. By comparing the BCAC Consortium and the 
FinnGen Consortium, we found that the KCNN4 gene 
had a potential causal relationship with breast cancer in 
both GWAS databases, as shown in Table 1.

Identification of differential genes associated with breast 
cancer
We screened the gene sequencing data of GSE162228 
and identified 2824 breast cancer-related differen-
tial expressed genes (DEGs) (Fig.  4A), including 1501 
upregulated and 1323 down-regulated genes. We found 
the KCNN4 gene exhibited different expression between 
tumor and normal tissues, consistent with the results 
of SMR analysis (log2FC = -0.735, P = 0.001, Fig.  4B and 
C). As shown in Fig. 4D, the relative expression level of 
KCNN4 in breast cancer samples was significantly lower 
than in normal samples (P < 0.05). This result was consis-
tent with the differential gene analysis results from the 
GEO database.

Druggability evaluation of the KCNN4
Among these 17 genes, we identified KCNN4, L3MBTL3, 
MDM4, TNFSF10, and ZBTB38 were genes consistently 
associated with overall breast cancer and some subtypes. 

Table 1 SMR analysis and colocalization analysis results of KCNN4 in discovery and replication databases
Consortium Type β SE P FDR PHEIDI PP.H4.abf
Breast Cancer Association Consortium Overall -2.42 0.41 3.59E-09 3.19E-06 4.41E-01 0.997

LuminalA -2.80 0.50 2.07E-08 4.04E-05 1.82E-01 0.992
Triple-Negative -3.18 0.76 2.81E-05 7.57E-03 9.54E-01 0.988
BRCA1_Mutation -2.47 0.59 2.62E-05 6.03E-03 5.47E-01 0.988

FinnGen Consortium Overall -1.79 0.53 6.38E-04 8.29E-02 7.84E-01 0.857
SMR, Summary data-based Mendelian randomization; β means the effect of genes on breast cancer using SMR method; SE means standard error; P means the 
P-value of the SMR analysis; FDR means P-value after false discovery rate; PHEIDI, the P-value of the heterogeneity in dependent instruments; PP.H4.abf, the posterior 
probability of hypothesis 4
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We conducted drug screening for five genes and reviewed 
the literature for relevant studies (Table S17). We found 
21 drugs that target KCNN4, but none of them are specif-
ically designed to treat breast cancer. However, it is worth 
noting that riluzole seems to have a preventive effect on 
breast cancer. We searched relevant literature and found 
that riluzole could induce apoptosis or inhibit the growth 
of breast cancer cells to a certain extent (Table S18) [18–
22]. However, drugs targeting the other genes (L3MBTL3: 
Unc-1215, MDM4: Nutlin-3, TNFSF10: Onc201) have 
not yet been approved for clinical utilization.

Discussion
In this study, we employed MR analyses to investigate 
the genes within 14 immune cell types that are associ-
ated with breast cancer and its subtypes. Through SMR 
analysis (PFDR <0.05 and PHEIDI >0.05), colocalization with 
Hypothesis 4 posterior probability > 80% (PP.H4 > 0.8), 
and horizontal pleiotropy evaluation, we identified 17 
genes across 9 immune cell types that showed signifi-
cant associations with overall breast cancer and its sub-
types. Among these 17 genes, we identified that KCNN4, 
L3MBTL3, MDM4, TNFSF10, and ZBTB38 were genes 
consistently associated with overall breast cancer and 
some subtypes. In this study, we aimed to explore the 
causal associations of genes in various immune cell 
types with breast cancer and its subtypes through SMR 
and colocalization analyses, and indeed we identified a 
couple of strong reproducible associations among them. 

However, further replication analyses were needed to 
confirm these findings. KCNN4 in MONOnc was also 
verified through the replication analysis and bulkRNA-
seq analysis (GEO, TCGA_GTEx). As far as we know, 
our research is the first study to explore the genetic con-
tributions of various genes across 14 immune cell types 
to breast cancer and its subtypes. The scRNA-seq has 
emerged as a valuable transcriptional profiling tool for 
defining cellular subpopulations and identifying cell-
type-specific biomarkers and heterogeneity in vari-
ous cancers, including breast cancer. We made use of 
extensive scRNA-seq data obtained from over a mil-
lion peripheral blood mononuclear cells to examine the 
genetic effects on gene expression within each immune 
cell type.

KCNN4 (potassium calcium-activated channel sub-
family N member 4), also known as SK4 and KCa3.1, is 
located in 19q13.31. Belonging to the family of K+ chan-
nels activated by Ca2+ [23], KCa 3.1 channels are widely 
expressed in many organs and play a role in the migra-
tion, proliferation, and activation of blood cells and ner-
vous system and vascular diseases [24–26]. In our SMR 
results, KCNN4 exhibited a negative correlation with 
breast cancer. However, other studies indicate that high 
expression of KCNN4 is related to tumor growth [27, 28] 
based on quantitative trait loci of gene expression, DNA 
methylation, and protein expression data [27, 28]. This 
may be because the K+ channel is often dysregulated in 
cancer [29]. In particular, KCa 3.1 is upregulated during 

Fig. 4 Combination figure of BulkRNA-seq analysis. A Heat map of differential gene analysis in GEO database; B The volcano map of differential gene anal-
ysis in GEO database, blue represents down-regulated gene, orange represents up-regulated gene, and gray represents no significant gene; C Box plot 
of KCNN4 gene expression(log2counts) in normal tissues and breast cancer tissues in GEO database; D Box plot of KCNN4 gene expression(log2counts) in 
normal tissues and breast cancer tissues of different stages in TCGA_GTEx database
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tumor progression [30] and leads to malignancy. Previous 
studies have explored the association between KCNN4 
and breast cancer by using mRNA expression data in 
whole blood, which could explain the potential incon-
sistency because our study examined the association by 
using single-cell transcriptomics within various immune 
cells. Recent evidence has suggested that ion channels 
expressed in tumor stromal cells, including immune cells, 
significantly contribute to the remodeling of the micro-
environment and the progression of tumors. Studies have 
demonstrated that elevated levels of extracellular potas-
sium (K+) in the cancer microenvironment result in an 
increased intracellular K+ concentration, which subse-
quently inhibits T cell function. However, the overex-
pression of KV 1.3 and KCa 3.1 in T cells has been shown to 
enhance K+ release, thereby restoring T cell function and 
reducing cancer growth [31, 32]. Therefore, the tumor 
lethality of T cells can be greatly amplified by using drugs 
that stimulate KCa 3.1 channels [32]. It has been reported 
that Riluzole can activate the SK4 channel [33], which 
provides an explanation for why Riluzole is capable of 
inhibiting the growth of breast cancer cells.

L3MBTL3, also referred to as MBT1, is a member of the 
MBT (malignant brain tumor) family [34]. Studies have 
demonstrated that the expression level of L3MBTL3 var-
ies between different cancers and normal tissues. How-
ever, the expression trends differ among various tumors, 
indicating that L3MBTL3 may fulfill distinct functions in 
different tumor types [35]. Siddhartha et al. found that 
L3MBTL3 was a common risk locus for breast and pros-
tate cancers [36]. In addition, L3MBTL3 variants were 
associated with colorectal, ER-negative breast, clear cell 
ovarian, and aggressive prostate cancers [37]. ZBTB38, a 
new member of the ZBTB family, is located on chromo-
some 3q23 and has eight exons. At present, studies spe-
cifically focusing on the relationship between ZBTB38 
and breast cancer are still lacking, but some studies have 
pointed out that the expression of ZBTB38 is related to 
the development of prostate cancer. It was observed that 
elevated levels of ZBTB38 could inhibit the proliferative 
and migratory capacities of prostate cancer cells [38], 
which was consistent with the results of another study 
[39].

In both triple-negative breast cancer and BRCA-TN 
breast cancer, we identified TNFSF10 and MDM4 as 
significant genes. TNFSF10, also known as TRAIL, is 
a member of the tumor necrosis factor (TNF) super-
family [40]. This ligand is classified as a homotrimeric 
type II transmembrane protein, which selectively trig-
gers apoptosis in tumor cells or transformed cells, while 
demonstrating non-toxicity towards normal cells. Han 
et al. have used the mouse model to explore the impact 
of TNFSF10-deficient tumor cells on the modulation of 
immune cell infiltration and antitumor immune response 

[41]. Their findings revealed that decreased TNFSF10 
expression could result in an unfavorable tumor micro-
environment (TME) and reduced responsiveness to che-
motherapy and immunotherapy. The MDM4 gene serves 
as an inhibitor of the p53 tumor suppressor protein [42]. 
Increased expression of the MDM4 gene promotes breast 
cancer cells growth. Conversely, reducing MDM4 expres-
sion can result in decreased cell numbers [43]. However, 
these findings contradict our research results, indicating 
a need for further investigation.

Our research presents several notable advantages. First, 
recognizing that gene function could vary by distinct cell 
type, we examined the causal relationship between gene 
expression in 14 different immune cell types and breast 
cancer, providing valuable insights into the cell-specific 
mechanisms underlying breast cancer. It should be noted 
that some genes were identified in different immune 
cells, which highlighted their potential combined action 
or synergy function on breast cancer. However, the effect 
sizes of the same genes on breast cancer and its subtypes 
showed a significant difference, underscoring the concept 
of tumor heterogeneity. Second, considering the various 
immunogenicity of different subtypes of breast cancer, 
we examined the overall breast cancer and its different 
subtypes separately. Third, we used replication analysis 
and bulkRNA-seq analysis for validation to enhance the 
robustness evidence of our studies. Finally, we employed 
various statistical analyses, including the HEIDI test and 
colocalization analysis, to ensure the validity and reliabil-
ity of the results. A couple of limitations should be noted 
when we interpret our research findings. First, we only 
looked at European populations in both the discovery 
and validation databases, which means we cannot rule 
out the possibility that breast cancer may differ across 
ethnic groups. The incidence of breast cancer is higher in 
women of African descent than in women of European 
descent, which could contribute to growing health dis-
parities in the field, especially as our goal is to identify 
druggable targets. Second, the small sample size of the 
eQTL data may have lower power to detect genes associ-
ated with breast cancer. Therefore, future studies includ-
ing other more diverse populations and larger sample 
sizes were needed to make up these limitations.

Conclusion
Overall, we have successfully identified 17 genes that are 
associated with breast cancer and its subtypes across 9 
different immune cell types. These genes exhibited var-
ied effect sizes and distinct associations with breast can-
cer subtypes, offering insight into the potential role of 
immune cell-specific genes in cancer development and 
paving the way for targeted interventions or treatments 
in the future. Meanwhile, the identification of these 
genes opens up new avenues for the development of gene 
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- targeted drugs. By precisely targeting these genes, there 
is potential to design more effective and less toxic thera-
peutic agents, which could potentially enhance current 
breast cancer treatment approaches and offer additional 
options for patients to improve survival and quality of 
life.
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