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Abstract
Background Gene expression profiles in breast tissue biopsies contain information related to chemotherapy 
efficacy. The promoter profiles in cell-free DNA (cfDNA) carrying gene expression information of the original tissues 
may be used to predict the response to neoadjuvant chemotherapy in breast cancer as a non-invasive biomarker. 
In this study, the feasibility of the promoter profiles in plasma cfDNA was evaluated as a novel clinical model for 
noninvasively predicting the efficacy of neoadjuvant chemotherapy in breast cancer.

Method First of all, global chromatin (5 Mb windows), sub-compartments and promoter profiles in plasma cfDNA 
samples from 94 patients with breast cancer before neoadjuvant chemotherapy (pCR = 31 vs. non-pCR = 63) were 
analyzed, and then classifiers were developed for predicting the efficacy of neoadjuvant chemotherapy in breast 
cancer. Further, the promoter profile changes in sequential cfDNA samples from 30 patients (pCR = 8 vs. non-pCR = 22) 
during neoadjuvant chemotherapy were analyzed to explore the potential benefits of cfDNA promoter profile 
changes as a novel potential biomarker for predicting the treatment efficacy.

Results The results showed significantly distinct promoter profile in plasma cfDNA of pCR patients compared with 
non-pCR patients before neoadjuvant chemotherapy. The classifier based on promoter profiles in a Random Forest 
model produced the largest area under the curve of 0.980 (95% CI: 0.978–0.983). After neoadjuvant chemotherapy, 
332 genes with significantly differential promoter profile changes in sequential cfDNA samples of pCR patients was 
observed, compared with non-pCR patients, and their functions were closely related to treatment response.
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Background
Neoadjuvant chemotherapy, an important part of the 
standard treatment, has been used more frequently in 
the treatment of breast cancer. It is the conventional 
therapy for patients with locally advanced breast cancer 
and it aims to shrink tumors to enable surgery and con-
serve the breast [1]. The tumor response to neoadjuvant 
chemotherapy is a strong predictive factor of patient 
outcome and prognosis and mainly assessed according 
to Response Evaluation Criteria in Solid Tumor version 
1.1 (RECIST v1.1) [2]. A pCR (pathological complete 
response) which is defined as 0% viable tumor cells in 
the residual tumor after neoadjuvant chemotherapy rep-
resents a surrogate marker endpoint for a prediction of 
good prognosis [3]. Achieving pCR is therefore one of the 
main objectives of neoadjuvant chemotherapy. However, 
only a minoring of patients could obtain pCR. There are 
still many patients with non-pCR [4, 5], and a small pro-
portion of them have no response to neoadjuvant chemo-
therapy, and some else even develop tumor progression 
[6, 7]. In addition, the risk of tumor progression and dis-
tant metastasis increased in non-pCR patients [8]. There-
fore, it is very important to evaluate the response in the 
pre-treatment or early treatment stage.

Conventional methods for assessing pCR after neoad-
juvant chemotherapy mainly consist of magnetic reso-
nance imaging (MRI), ultrasound (US), mammography, 
and positron emission tomography/computed tomogra-
phy (PET/CT). However, these imaging methods are lim-
ited in accurately assessing the early treatment response, 
and postoperative pathological examination has a time 
lag in response to therapeutic effects, which is not con-
ducive to the timely adjustment of treatment strategies 
[9]. The gold standard for response is the examination 
of surgically resected specimens. Some reports have 
attempted to characterize molecular predicting biomark-
ers at pre-treatment and early treatment of neoadjuvant 
chemotherapy using tissue specimens [10, 11]. However, 
the pre- and post-treatment puncture tissue specimens 
obtained would traumatize the patients. Furthermore, 
the tissue specimens from the puncture were scarce and 
difficult to represent the entire genomic landscape of 
breast tumors. The response monitoring through sequen-
tial samples is even more difficult to achieve.

Liquid biopsy may enable sensitive prediction of recur-
rence and clinical outcomes [12]. CfDNA has been an 
essential biomarker in many cancer applications, such as 
early detection and outcome prediction of cancer. A few 

other reports have suggested that whole genome cfDNA 
could detect early-stage cancer [13, 14]. CfDNA could 
provide more comprehensive information because it con-
tains both tumor-derived and non-tumor-derived DNA 
information [13, 14]. There has been some evidence of 
the interrelation between non-tumor-derived DNA and 
cancers, including that some immune-cell apoptosis pat-
terns were found in patients with cancers, and a low lym-
phocyte-to-monocyte ratio was found to correlate with 
poor prognosis [15, 16].

Importantly, cfDNA has been considered to carry 
nucleosomal footprints from the necrotic tumor tissue 
and apoptotic leukocytes, and the coverage of the pro-
moters could be used to predict gene expression [17–20]. 
As tumor and immune-cell gene expression are both 
closely related to the response to cancer therapy and 
cfDNA has been demonstrated containing tumor-specific 
and non-tumor-specific open chromatin regions [21], 
we hypothesized that the promoter profiles in plasma 
cfDNA could be used for predicting the efficacy of neo-
adjuvant chemotherapy.

In the present study, we performed an exploratory 
study to investigate the feasibility of using the promoter 
profiles in plasma cfDNA for predicting the efficacy of 
neoadjuvant chemotherapy in breast cancer. We first 
compared the global chromatin (5  Mb windows), sub-
compartments and promoter profiles in plasma cfDNA 
before treatment between the pCR and non-pCR to neo-
adjuvant chemotherapy in patients with breast cancer, to 
identify the potential utility of the promoter profiles for 
predicting the efficacy of neoadjuvant chemotherapy. 
Further, we developed classifiers based on the promoter 
profiles for predicting the efficacy using multiple machine 
learning models. Finally, we analyzed the promoter pro-
file changes in sequential cfDNA samples during neoad-
juvant chemotherapy to explore the potential benefits of 
on-treatment cfDNA promoter profiles as a novel poten-
tial biomarker for predicting the treatment efficacy.

Methods
Patients and samples
Tables  1 and 2 provided the clinical characteristics of 
the patients. A total of 154 retrospective plasma samples 
from 94 patients with breast cancer including 94 samples 
before neoadjuvant chemotherapy (T0, pre-treatment) 
who mainly received adjuvant anthracyclines, cyclo-
phosphamide and paclitaxel regimens, and 60 samples 
from the above 30 patients at two other time points, 

Conclusion These results suggest that promoter profiles in plasma cfDNA may be a powerful, non-invasive tool for 
predicting the efficacy of neoadjuvant chemotherapy breast cancer patients before treatment, and the on-treatment 
cfDNA promoter profiles have potential benefits for predicting the treatment efficacy.
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post- 3 or 4 cycles of epirubicinneoa/cyclophosphamide 
(EC) treatment (T1), and subsequent post- 3 or 4 cycles 
of docetaxel (T) treatment (T2) before surgery, in addi-
tion to pre-treatment (T0). The total 154 samples were 
collected from February 2017 to July 2019 and stored at 
-80℃ before use. All 94 patients received neoadjuvant 
chemotherapy followed by surgery. The postsurgical 

assessment was performed according to the evaluation 
criteria of the Miller−Payne histological grading sys-
tem using tissue samples collected during surgery after 
completion of neoadjuvant chemotherapy [22, 23]. Based 
on the response to cancer therapy, the participants were 
divided into two groups: patients with pCR (n = 31) and 
non-pCR (n = 63) before neoadjuvant chemotherapy; and 

Table 1 Clinical characteristics of 94 breast cancer patients
All Patients pCR non-pCR P-value
(n = 94) (n = 31) (n = 63)

Age years, median (IQR) 47 (11) 46 (11) 48 (11) 0.954 *

Histological grade 0.405 *

< 3 73 (77.66%) 23 (74.19%) 50 (79.37%)
= 3 21 (22.34%) 8 (25.81%) 13 (13.83%)
HER2 status 0.995 #

Positive 43 (45.74%) 18 (58.06%) 25 (39.68%)
Negative 51 (54.26%) 13 (41.94%) 38 (60.32%)
ER status < 0.001 *

Positive 64 (68.09%) 15 (48.39%) 49 (77.78%)
Negative 30 (31.91%) 16 (51.61%) 14 (22.22%)
PR status 0.017 *

Positive 71 (75.53%) 20 (64.52%) 51 (80.95%)
Negative 23 (24.47%) 11 (35.48%) 12 (19.05%)
Ki67 degree 0.014 *

≤ 30% 48 (51.06%) 11 (35.48%) 37 (58.73%)
> 30% 46 (48.94%) 20 (64.52%) 26 (41.27%)
Adjuvant anthracyclines (E/D), cyclophosphamide (C), paclitaxel (T) regimens 0.365 #

EC-T 62 (65.96%) 18 (58.06%) 44 (69.84%)
DC-T 15 (15.96%) 6 (19.35%) 9 (14.29%)
T-EC 8 (8.51%) 4 (12.90%) 4 (6.35%)
EC 3 (3.19%) 0 (0%) 3 (4.76%)
TC 1 (1.06%) 0 (0%) 1 (1.59%)
T 5 (5.32%) 3 (9.68%) 2 (3.17%)
Adjuvant mabs 0.002 #

Trastuzumab 35 (37.23%) 16 (51.61%) 19 (30.16%)
Trastuzumab + Patuzumab 3 (3.19%) 3 (9.68%) 0 (0%)
No 56 (59.57%) 12 (38.71%) 44 (69.84%)
Adjuvant carboplatin 0.989 #

Yes 3 (3.19%) 1 (3.23%) 2 (3.17%)
No 91 (96.81%) 30 (96.77%) 61 (96.83%)
Incomplete Prognostic information (< 3 years outcome) 5 2 3
Relapse (≥ 3 years outcome) 0.546 #

No 82 (92.13%) 26 (89.66%) 56 (93.33%)
Yes 7 (7.87%) 3 (10.34%) 4 (6.67.%)
Relapse-free survival Months, median (IQR) 55 (16) 52 (16) 56 (15) 0.563 *

Disease (≥ 3 years outcome) 0.212 #

No 79 (88.76%) 24 (82.76%) 55 (91.67%)
Yes 10 (11.24%) 5 (17.24%) 5 (8.33%)
Survival status (≥ 3 years outcome) 0.484 #

Alive 88 (98.88%) 29 (100%) 59 (98.33%)
Dead 1 (1.126%) 0 (0%) 1 (1.67%)
Abbreviations: * T test (two-tailed); # Pearson’s chi-squared test; IQR: interquartile range; ER, estrogen receptor; PR, progesterone; HER2, human epidermalgrowth 
factor receptor-2; EC-T: four cycles of epirubicin (E)/cyclophoshamide (C) followed by four cycles of docetaxel (T); DC-T: four cycles of liposome doxorubicin (D)/
cyclophoshamide (C) followed by four cycles of docetaxel (T); EC: four cycles of epirubicin (E)/cyclophoshamide (C); TC: six cycles of docetaxel (T)/cyclophoshamide 
(C); T: six cycles of docetaxel (T); pCR, pathological complete response; non-pCR, non-pathological complete response
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patients with pCR (n = 8) and non-pCR (n = 22) during 
treatment. Plasma samples were collected from patients 
at the First People’s Hospital of Foshan, Guangdong, 
China. Ethical approval was obtained from the Ethics 
Committee of the First People’s Hospital of Foshan (ethi-
cal review number: L[2021] no.5). All the participants 
provided written informed consent.

Sample preparation and sequencing of cfDNA
500 µL plasma was obtained from 1 mL peripheral blood 
in EDTA tubes through two-step centrifugation. The cen-
trifugal parameters were 10 min at 1,600 g, followed by 
10 min at 16,000 g, both at 4℃. The plasma was stored at 
-80℃ before use. 1–5 ng cfDNA was extracted from the 
entire 500 µL plasma using a QIAamp DNA Blood Midi 
Kit (Qiagen) per sample and used for library construction 
using the Life Sciences Ion Xpress Plus Fragment Library 
Kit (Life Technologies, USA). The libraries were analyzed 
using a bioanalyzer (Agilent Technologies, Singapore). 
Sequencing was performed using the Ion PI Hi-Q OT2 
200 Kit and Ion PI Hi-Q Sequencing 200 Kit. A total 
of 6−10  million reads were generated for each cfDNA 
sample.

Global chromatin (5 Mb windows) and sub-compartments 
analysis
The sequencing reads were aligned to the human refer-
ence genome (hg19) using TMAP (Torrent Mapping 
Alignment Program, TMAP), and the PCR (Polymerase 

Chain Reaction, PCR) duplicates were removed using the 
SAMtools rmdup function [24]. To remove the biases in 
coverage attributable to the GC content of the genome, 
we used LOWESS (Locally Weighted Scatterplot 
Smoothing, LOWESS) with a span setting of 0.75 for each 
sample. The differential global chromatin in between the 
pCR group (n = 31) and the non-pCR group (n = 63), were 
first analyzed using the number of reads mapped to each 
5-megabase (Mb) region by adding up the GC-adjusted 
coverage values of the 100-kb bins. The differential sub-
compartments from the Hi-C data of GM12878 [25, 
26] in between the two groups were calculated using 
the number of reads mapped to each 100-kilobase (kb) 
region by adding the GC-adjusted coverage of the 100-kb 
bins.

Promoter profiles in plasma cfDNA analysis
The coverage in the promoter region was defined as cov-
erage of -1,000 bp to + 1,000 bp around the transcription 
start site (TSS), according to RefSeq of the University of 
California Santa Cruz (UCSC). The coverage values were 
analyzed using bedtools (ver. 2.17.0) [27]. Subsequently, 
the promoter profile was normalized by dividing the 
coverage of the promoter region by the total number of 
mapped reads. Finally, promoter profile changes between 
the pCR and non-pCR groups (pCR = 31 and non-
pCR = 63) were analyzed.

Table 2 Clinical characteristics of 30 breast cancer patients undergoing EC-T chemotherapy
All Patients pCR non-pCR P-value
(n = 30) (n = 8) (n = 22)

Age years, median (IQR) 50 (16) 47 (14) 51 (16) 0.635 *

Histological grade 1.000 *

< 3 22 (73.33%) 6 (75.00%) 16 (72.73%)
= 3 8 (26.67%) 2 (25.00%) 6 (27.27%)
HER2 status 1.000 #

Positive 10 (33.33%) 2 (25.00%) 8 (36.36%)
Negative 20 (66.67%) 6 (75.00%) 14 (63.64%)
ER status 0.235 *

Positive 21 (70.00%) 4 (50.00%) 17 (77.27%)
Negative 9 (30.00%) 4 (50.00%) 5 (22.73%)
PR status 0.673 *

Positive 22 (73.33%) 4 (50.00%) 8 (36.36%)
Negative 8 (26.67%) 4 (50.00%) 14 (63.64%)
Ki67 degree 0.122 *

≤ 30% 17 (56.67%) 5 (62.50%)) 12 (54.55%)
> 30% 13 (43.33%) 3 (37.50%) 10 (45.45%)
Adjuvant mabs 0.232 #

Trastuzumab 6 (20.00%) 2 (25.00%) 4 (18.18%)
No 24 (80.00%) 6 (75.00%) 18 (81.82%)
Abbreviations: * Wilcoxon rank-sum test; # Pearson’s chi-squared test; IQR: interquartile range; ER, estrogen receptor; PR, progesterone; HER2, human epidermal 
growth factor receptor-2; EC-T: four cycles of epirubicin (E)/cyclophoshamide (C) followed by four cycles of docetaxel (T); pCR, pathological complete response; 
non-pCR, non-pathological complete response



Page 5 of 14Yang et al. Breast Cancer Research          (2024) 26:112 

Statistical analysis
Wilcoxon rank sum test (two-sided) was used for the 
analysis of the changes between pCR and non-pCR 
group. The approach for distinguishing pCR and non-
pCR was obtained based on the differential promoter 
profiles with P-value ≤ 0.05 and fold change ≥ 1.2. Prin-
cipal component analysis (PCA) was performed on the 
differential genes. Hierarchical clustering was applied to 
the coverage in the promoter region, using the average-
linkage clustering algorithms in Cluster (ver. 3.0). Heat 
maps were plotted using the pheatmap package in the 
R software (version 3.0.1). The volcano map was plotted 
using ggplot2.

Classifiers for distinguishing pCR and non-pCR groups
Genes with significantly different TSS coverage were first 
selected through Boruta algorithm, which were defined 
as “Confirmed” or “Tentative”, and then the classifiers for 
distinguishing between the pCR and non-pCR groups 
were developed using Logistic Regression (LR), Random 
Forest (RF) and Support Vector Machines respectively 
(SVM). Five-fold cross-validation was used to randomly 
divide the samples into training and validation sets and 
evaluate the performance. In the training set, the nor-
malized read count of each TSS was discretized accord-
ing to the optimal cut-off point before the approach. The 
optimal cut-off point for each promoter was defined as 
the maximum value of (sensitivity + specificity)/2 in the 
training sets. Receiver operating characteristic (ROC) 
curve analysis was performed to calculate the area under 
the curve (AUC) of the validation set, using the pROC 
(version 1.16.2) R package (version 3.5.1). The entire pro-
cess is repeated 100 times. The classifiers basd on gloabl 
chromatin (5 Mb windows) and sub-compartments were 
performed in the same way.

Functional annotation and enrichment
To explore the function of the corresponding genes of dif-
ferential TSSs, Gene Ontology (GO), Kyoto Encyclopedia 
of Genes and Genomes (KEGG) pathway and Gene Set 
Enrichment Analysis (GSEA) were performed using the 
R package, clusterProfler (Version 4.2.0) [28]. GO terms 
and KEGG pathways were obtained from the QuickGo 
[29] and KEGG [30] websites respectively. GSEA was 
conducted based on each gene to identify significantly 
distinct pathways from the GO and KEGG database 
respectively between pCR and non-pCR groups.

Survival analysis
Survival analysis was performed at different time points 
using the Kaplan-Meier test and Cox proportional-haz-
ards model.

Results
Differential global chromatin (5 mb windows) and sub-
compartments in between pCR and non-pCR group
The workflow of our study mainly consisted of three 
stages, including discovery, validation by developing clas-
sifiers and promoter changes analysis in cfDNA during 
EC-T treatment (Fig.  1). According to their response to 
cancer therapy, patients with breast cancer were divided 
into two groups: pCR and non-pCR groups. As previous 
studies reported, global chromatin changes occur in dif-
ferent types of cancer [13], and thus there may be global 
nucleosomal differences between patients with different 
responses to neoadjuvant therapy. In the discovery, we 
first compared differential global chromatin of cfDNA in 
between the pCR group and non-pCR group to neoad-
juvant chemotherapy, and we found that there were 98 
distinct genomic fragments (P ≤ 0.05) with increases and 
decreases in 5 M windows between the pCR group and 
non-pCR group, distributed across all the autosomes but 
chromosome 21 and chromosome X by Wilcoxon rank 
sum test, with the fold change from 0.95 to 1.06 (Fig. 2a; 
Additional file 1: Table S1). We then compared the dif-
ferences in the sub-compartments between the two 
groups. According to the Hi-C data of GM12878, sub-
compartments A1 and A2 consisted of gene-enriched 
euchromatic regions, B1, B2, and B3 mainly consisted of 
facultative heterochromatic regions, and B4 was merely 
present on chromosome 19 [25]. We observed 246 dis-
tinct sub-compartments with increased and decreased 
signals between the pCR group and non-pCR group in all 
sub-compartment regions (Fig. 2b, c and d), with the fold 
change from 0.95 to 1.06 (Additional file 1: Table S2).

Differential promoter profiles in between pCR and non-
pCR group
The promoter profiles in the plasma cfDNA are related 
to the gene expression status [17–20]. CfDNA has been 
demonstrated to contain the open chromatin regions of 
tumor-specific and non-tumor-specific promoters [21]. 
As the molecular expression profiles were different in the 
tumor tissue between the pCR and non-pCR groups [10, 
11], we next compared the promoter profiles in cfDNA 
between the pCR and non-pCR groups. We analyzed the 
promoter profiles by calculating the coverage of -1,000 bp 
to + 1,000  bp around the transcription start site (TSS) 
across all genes, and identified 1152 TSSs with signifi-
cantly different coverage between the pCR and non-pCR 
groups: 675 TSSs with relatively high coverage and 477 
TSSs with relatively low coverage in the patients with 
pCR (Fig. 3a; Additional file 1: Table S3, fold change ≥ 1.2, 
P-value ≤ 0.05, Wilcoxon rank-sum test). PCA analy-
sis revealed that these differential TSSs in the samples 
from the same group were clustered together, while the 
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samples from different groups were scattered (Additional 
file 2: Figure S1).

Genes with different coverage aroud TSSs in plasma 
cfDNA between the pCR and non-pCR groups may play 
important roles in breast cancer therapy. Gene Ontology 
(GO) and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway enrichment analysis revealed that sig-
nificant genes are mostly associated with metabolic and 
biosynthetic processes, and some are related to cancer 
therapy, such as Proteoglycans in cancer and Hippo sig-
naling pathway (Fig. 3b and c; Additional file 1: Table S4; 
Additional file 1: Table S5). GSEA analysis showed that 
the differential pathways enriched between pCR and 
non-pCR groups were the response to chemical stimulus 
(Fig. 3d, Additional file 1: Table S6), and multiple signal-
ing pathways associated to cancer (Fig.  3e, Additional 
file 1: Table S7). According to the current literature [17, 

31], cfDNA derived mainly from peripheral blood and 
tumor tissue, and it could reflect the expression status 
of its original tissues. Thus, the differential promoter 
profiles may be associated with response to neoadjuvant 
chemotherapy.

Classifiers for predicting response to neoadjuvant 
chemotherapy
To further evaluate the potential promoter profiles for 
predicting response to neoadjuvant chemotherapy, we 
used the differential global chromatin (5  Mb windows), 
sub-compartments and promoter profiles in plasma 
cfDNA samples in the discovery stage and developed 
three classifiers to predict pCR. Five-fold cross-valida-
tion was used one hundred times to randomly divide 94 
patients into training and validation sets and evaluate 
the performance. ROC analysis was used to evaluate the 

Fig. 1 Study design. Our study mainly consisted of three stages, including discovery, validation by developing classifiers and promoter changes analysis 
in cfDNA during EC-T treatment. In the discovery stage, the genes with differential coverage in cfDNA of between pCR and non-pCR patients were identi-
fied. In the validation stage, different classifiers were developed by using the differential features. In the last stage, differential promoter profile changes 
due to EC-T treatment in cfDNA of between pCR and non-pCR patients were analyzed. cfDNA, cell-free DNA; EC-T, 3 or 4 cycles of epirubicinneoa/
cyclophosphamide (EC) treatment and subsequent 3 or 4 cycles of docetaxel treatment before surgery; pCR, pathological complete response; non-pCR, 
non-pathological complete response
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Fig. 3 Differential promoter profiles in cfDNA of between pCR and non-pCR patients. a Volcano plots of differential promoter profiles (P-value ≤ 0.05 and 
fold change ≥ 1.2). b GO enrichment analysis of the differential promoter profiles. c KEGG pathway analysis of the differential promoter profiles. d GSEA 
analysis of differential pathways from GO database. e GSEA analysis of differential pathways from KEGG database. cfDNA, cell-free DNA; pCR, pathological 
complete response; non-pCR, non-pathological complete response; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; GSEA, Gene 
Set Enrichment Analysis

 

Fig. 2 Differential global chromatin (5 Mb windows) and sub-compartments in cfDNA of between pCR and non-pCR patients. a Genome-wide fragmen-
tation profiles shown in 5 Mb bins in cfDNA of pCR and non-pCR patients. b Sub-compartments in cfDNA of pCR patients. c. Sub-compartments anno-
tated in cfDNA of non-pCR patients. d The fold change and P-value of sub-compartments in cfDNA of pCR versus non-pCR patients. Sub-compartments 
of the human genome were annotated by the Hi-C data of GM12878. A1 and A2 regions are enriched regions. B1 consists of facultative heterochromatic 
regions. B2 is enriched at the nuclear lamina and NADs. B3 is also enriched at the nuclear lamina but not at NADs. cfDNA, cell-free DNA; pCR, pathological 
complete response; non-pCR, non-pathological complete response; cfDNA, cell-free DNA; NADs, nucleolus-associated domains
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area under curve (AUC), accuracy, sensitivity and speci-
ficity. Among all combinations, the classifiers based on 
the promoter profiles of 30 genes had a higher perfor-
mance, compared with global chromatin (5 Mb windows) 
and sub-compartments in each LR, RF and SVM model 
(Fig. 4a and g; Table 3). Across all cohorts, the classifier 
based on the promoter profiles had a highest AUC value 
(AUC = 0.980 (95% CI, 0.978–0.983) in Random Forest 
model, with an accuracy of 0.953 (95% CI, 0.948–0.957), a 
specificity of 0.943 (95% CI, 0.937–0.950) and a sensitiv-
ity of 0.973 (95% CI, 0.968–0.978)) (Fig. 4c; Table 3). The 
regions used in the classifiers were displayed in Addi-
tional file 1: Table S8.

The promoters in plasma cfDNA associated with long-term 
outcome
The follow-up data up to 60 months for the patients was 
collected. In view of this, we performed Kaplan-Meier 
analysis and observed 370 TSSs associated with relapse-
free survival (PKM ≤0.05, PHR ≤0.05) (Additional file 1: 
Table S9) and 399 TSSs associated with disease-free sur-
vival (PKM ≤0.05, PCOX ≤0.05) (Additional file 1: Table 
S10). However, the total number of relapses and diseases 
was limited and not significantly associated with pCR 
(RFS, P = 0.563; DFS, P = 0.212), we focused only several 
genes, which were related to prognosis in the previous 
reports [32–37]. The results showed that the high cov-
erage of promoters in BAG2 and TRIM35 gene was sig-
nificantly associated with both RFS and DFS. The high 
coverage in TEAD4 and the low coverage in TP53, was 
significantly associated with RFS. The high coverage in 
GNAI2 and RUFY3 gene was significantly associated with 
DFS (Fig. 5). These genes were often highly expressed in 
many tumors, and associated with prognosis. For exam-
ple, TP53 as a tumor suppressor, was significantly asso-
ciated with good prognosis [32]. Our approach showed 
that the DFS in the group with high coverage of promoter 
in TP53 in plasma cfDNA was significantly shorter than 
that with low coverage. This suggest that TP53 may be 
down-expressed in tumor tissues.

Differential changes of promoter profiles in plasma cfDNA 
of patients during EC-T neoadjuvant chemotherapy in 
between pCR and non-pCR group
To explore whether the changes of cfDNA promoter pro-
files have the potential benefits of predicting the treat-
ment efficacy, we analyzed 90 matched sequential cfDNA 
samples from 30 patients (pCR = 8 vs. non-pCR = 22) 
during neoadjuvant chemotherapy at three time points: 
pre-treatment (T0), post- 3 or 4 cycles of epirubicinneoa/
cyclophosphamide (EC) treatment (T1), and subsequent 
post- 3 or 4 cycles of docetaxel (T) treatment (T2) before 
surgery. We compared the cfDNA promoter profile 
changes in between pCR group and non-pCR group, due 

to EC treatment and T treatment respectively. In total, 
65 up-regulated TSSs and 14 down-regulated TSSs dur-
ing EC treatment, and 104 up-regulated and 149 down-
regulated TSSs during T treatment in pCR patients were 
observed (P ≤ 0.05, fold change > 1.2) (Fig.  6a and Addi-
tional file 1: Table S11).

GO enrichment analysis based on these total 332 dif-
ferential changes revealed they are mostly associated 
with cell response and immune response to treatment, 
such as T cell activation, response to radiation, cell acti-
vation involved in immune response, leukocyte activa-
tion involve in immune response, cellular response to 
radiation, cellular response to light stimulus and cellu-
lar response to ionizing radiation. Some are related to 
cell growth, such as regulation of peptidase activity and 
membrane assembly (Fig.  6b; Additional file 1: Table 
S12). KEGG pathway revealed that the changes were 
enriched in multiple pathways, such as PI3K-Akt signal-
ing pathway, and MAPK signaling pathway (Fig. 6c; Addi-
tional file 1: Table S13). Previous studies [38, 39] have 
shown these pathways were closely related to the patient’s 
response to cancer therapy. These results may indicate 
that promoter profile changes during treatment may be 
useful for predicting the effectiveness of cancer therapy.

We further performed GO and KEGG analysis for each 
cluster, due to EC treatment at the first stage (Cluster 1 
and Cluster 3) and T treatment at the second stage (Clus-
ter 2 and Cluster 4) (Fig. 6a). 65 genes with up-regulated 
TSSs in Cluster 1 are mostly associated with cell response 
and metabolism (Fig. 7a and b), and 14 genes with down-
regulated TSSs in Cluster 3 are mostly associated with 
cell motility and metabolism (Fig.  7e and f ) after EC 
treatment. 104 genes with up-regulated TSSs in Cluster 
2 are mostly associated with immune response to treat-
ment, such as T cell activation (Fig.  7c and d), and 149 
genes with down-regulated TSSs in Cluster 4 are mostly 
associated with TGF-β signaling pathway (Fig. 7g and h) 
after T treatment.

Discussion
Currently, clinical parameters, such as tumor size, estro-
gen, or HER-2 receptor status, histologic or nuclear 
grade, and the expression of single molecular markers, 
show a weak association with the response, limiting their 
utility in selecting chemotherapy treatment. Multigene 
molecular expression predictors in tissue samples are 
more regimen-specific and have been used according to 
the guidelines for breast cancer published by the National 
Comprehensive Cancer Network (NCCN) [40] and the 
American Joint Committee on Cancer [41] in 2019: the 
Oncotype DX 21-gene assay, Mamma Print 70-gene 
assay, Endo-Predict 12-gene assay, PAM 50 (Prosigna), 
and Breast Cancer Index (BCI) tests. However, there 
are currently few noninvasive diagnostic approaches 
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Fig. 4 Receiver operating characteristic (ROC) curves of classifiers for distinguishing pCR and non-pCR patients. a The classifier based on global chro-
matin (5 Mb windows) in Random Forest. b The classifier based on sub-compartments in Random Forest. c The classifier based on promoter profiles in 
Random Forest. d The classifier based on global chromatin (5 Mb windows) in Logistic Regression. e The classifier based on sub-compartments in Logistic 
Regression. f The classifier based on promoter profiles in Logistic Regression. g The classifier based on global chromatin (5 Mb windows) in Support 
Vector Machines. h The classifier based on sub-compartments in Support Vector Machines. i The classifier based on promoter profiles in Support Vector 
Machines. pCR, pathological complete response; non-pCR, non-pathological complete response; RF: Random Forest; LR: Logistic Regression; SVM, Sup-
port Vector Machines
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available for breast cancer response to neoadjuvant che-
motherapy predicting. Circulating tumor DNA (ctDNA) 
generally represents a small fraction of all plasma cell-
free DNA (cfDNA), ranging from ≥ 5−10% in late-stage 
cancer to ≤ 0.01−1.0% in early-stage cancer [42]. In this 
study, we provide a new non-invasive method for pre-
dicting the response to chemotherapy based on expres-
sion-specific nucleosomal footprints in plasma cfDNA.

The necrotic tumor tissue and apoptotic leukocytes 
would generally released their DNA into plasma. Thus 
nucleosomal footprints of leukocytes cells and tumor 
cells were reflected in plasma cfDNA. A pCR is currently 
considered to be the best early outcome after neoadju-
vant therapy [43]. Through the analysis of the correla-
tion of nucleosomal footprints in plasma cfDNA and 
pCR acheiving, we found that there were significant dif-
ferences in the global chromatin (5  M windows), sub-
compartments, and promoter profiles of cfDNA in the 

pre-treatment stage between pCR and non-pCR patients. 
A similar finding was observed in patients with colorec-
tal cancer patients treated with neoadjuvant chemora-
diotherapy [31]. The genes with differential promoter 
coverage were enriched in metabolic and biosynthetic 
processes, and some are related to cancer therapy, such 
as Proteoglycans in cancer and Hippo signaling pathway 
(Fig. 3b and d; Additional file 1: Table S4; Additional file 
1: Table S5). Previous studies have shown that these path-
ways are closely associated with the response of patients 
to cancer therapy. For instance, proteoglycans are attrac-
tive pharmacological targets [44]. Hippo signaling path-
way might be a therapeutic target [45]. These results may 
indicate that promoter profiles may be useful for predict-
ing the effectiveness of cancer therapy before treatment.

Further, we used global chromatin (5 M windows), sub-
compartments, and promoter profiles in plasma cfDNA 
and developed classifiers for distinguishing between pCR 

Table 3 The features of the classifiers based on machine leaning models
Features Accuracy (95% CI) Specifity (95% CI) Sensitivity (95% CI)
5 Mb windows-RF 0.712 (0.703–0.720) 0.753 (0.736–0.771) 0.642 (0.625–0.659)
Sub-compartments-RF 0.887 (0.880–0.893) 0.901 (0.891–0.911) 0.858 (0.846–0.870)
Promoter profiles-RF 0.953 (0.948–0.957) 0.943 (0.937–0.950) 0.973 (0.968–0.978)
5 Mb windows-LR 0.716 (0.707–0.724) 0.728 (0.711–0.746) 0.692 (0.675–0.709)
Sub-compartments-LR 0.833 (0.826–0.840) 0.822 (0.810–0.833) 0.856 (0.843–0.869)
Promoter profiles-LR 0.880 (0.874–0.887) 0.870 (0.861–0.880) 0.901 (0.891–0.911)
5 Mb windows-SVM 0.538 (0.527–0.550) 0.582 (0.550–0.614) 0.449 (0.418–0.480)
Sub-compartments-SVM 0.829 (0.823–0.836) 0.936 (0.929–0.943) 0.614 (0.598–0.630)
Promoter profiles-SVM 0.918 (0.913–0.923) 0.956 (0.950–0.961) 0.841 (0.829–0.854)
Abbreviations: RF: Random Forest; LR: Logistic Regression; SVM, Support Vector Machines

Fig. 5 Disease-free survival (DFS) and relapse-free survival (RFS) for BAG2, TRIM35, TEAD4, TP53, GNAI2 and RUFY3. HR, hazard ratio; pCR, pathological 
complete response; non-pCR, non-pathological complete response
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and non-pCR to neoadjuvant chemotherapy based on 
the size of 94 patients. The result showed that one clas-
sifier based on promoter profiles in plasma cfDNA pre-
sented the high performance with the maximum AUC 
(AUC = 0.897, 95% CI: 0.891–0.904), compared with 
those based on global chromatin (5  Mb windows) and 
sub-compartments (Fig.  4). There are 30 genes in the 
classifier, and these genes are closely associated with the 
treatment efficacy (Additional file 1: Table S8). We fur-
ther analyzed several genes related to prognosis, such 
as BAG2, TRIM35, TEAD4, TP53, GNAI2 and RUFY3. 
These genes were often highly expressed in many tumors, 
and associated with prognosis, the results were consis-
tent with previous reports [32–37]. Thus we demon-
strated that plasma cfDNA contains information on the 
efficacy of neoadjuvant chemotherapy before treatment, 
and the promoter profiles in plasma cfDNA might be an 

effective tool for predicting the efficacy of neoadjuvant 
chemotherapy in breast cancer.

We also noted some significantly differential changes 
of promoter profiles in plasma cfDNA of patients during 
neoadjuvant chemotherapy in between pCR group and 
non-pCR group. GO enrichment and KEGG pathway 
analysis revealed that the related genes are mostly associ-
ated with cell response, immune response to treatment, 
and response to cancer therapy. The genes in tumor tis-
sues and immune cells in the patients who responded 
differently to treatment would be expressed differently. 
And further, the promoter profiling in plasma cfDNA 
could reflect the gene expression in original tumor tis-
sues and immune cells. By further GO enrichment and 
KEGG pathway analyzing each cluster, cell response 
pathway to treatment is mainly concentrated in Cluster 
1 (Fig. 7a and b), in which the coverage of promoter pro-
files was up-regulated due to EC treatment at the first 

Fig. 6 Differential changes of promoter profiles in cfDNA of between pCR and non-pCR patients during EC-T neoadjuvant chemotherapy. a Heat map of 
the z-scores of cfDNA promoters with differential read coverage changes. b GO enrichment analysis of the differential promoter changes. c KEGG pathway 
analysis of the differential promoter changes. cfDNA, cell-free DNA; pCR, pathological complete response; non-pCR, non-pathological complete response; 
GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes
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Fig. 7 GO enrichment and KEGG pathway analysis for each cluster. a GO enrichment analysis for cluster 1; b KEGG pathway analysis for cluster 1; c GO 
enrichment analysis for cluster 2; d KEGG pathway analysis for cluster 2; e GO enrichment analysis for cluster 3; f KEGG pathway analysis for cluster 3; g GO 
enrichment analysis for cluster 4; h KEGG pathway analysis for cluster 4. Cluster 1, the coverage of promoter profiles was up-regulated due to EC treatment 
at the first stage in pCR group; cluster 2, the coverage of promoter profiles was up-regulated due to T treatment at the second stage in pCR group; cluster 
3, the coverage of promoter profiles was down-regulated due to EC treatment at the first stage in pCR group; cluster 4, the coverage of promoter profiles 
was down-regulated due to T treatment at the second stage in pCR group; pCR, pathological complete response
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stage in pCR group. Often, patients responded strongly 
at early stage in the whole course of treatment. Immune 
response immune response mainly concentrated in Clus-
ter 2 (Fig. 7c and d), in which the coverage of promoter 
profiles was up-regulated due to T treatment at the sec-
ond stage in pCR group. During the course of treatment, 
the immune system is subsequently stimulated at a later 
stage. Thus, these results suggests that promoter profile 
changes during treatment may be useful for predicting 
the effectiveness of cancer therapy.

Our study has also some limitations. First, as a limi-
tation of our sample size, we only separated patients 
into pCR and non-pCR groups. However, patients with 
non-pCR show different degrees of sensitivity to cancer 
therapy. Further imaging and pathological evaluation are 
necessary for surgical management after neoadjuvant 
chemotherapy. Second, the small sample size limits us 
to perform the validity of the cohort. The approach for 
distinguishing between the pCR and non-pCR groups 
should be validated with more independent cohorts 
before its clinical application.

Conclusions
In summary, promoter profiles in plasma cfDNA is a 
powerful, non-invasive tool for predicting the efficacy 
of neoadjuvant chemotherapy breast cancer patients 
before treatment, and the on-treatment cfDNA promoter 
profiles have potential benefits for predicting the treat-
ment efficacy. Our method based on promoter profiles 
is promising for assessing the response of patients with 
breast cancer to therapy before treatment and at early 
stage during treatment and it is a non-invasive tech-
nique that requires only low-coverage DNA sequencing 
and avoids cancer heterogeneity. Therefore, our method 
may help prevent the indiscriminate use of drugs, reduce 
toxicity and side effects, and improve curative effects and 
quality of life.
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