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Abstract 

Background  Previous work in European ancestry populations has shown that adding a polygenic risk score (PRS) 
to breast cancer risk prediction models based on epidemiologic factors results in better discriminatory performance 
as measured by the AUC (area under the curve). Following publication of the first PRS to perform well in women 
of African ancestry (AA-PRS), we conducted an external validation of the AA-PRS and then evaluated the addition 
of the AA-PRS to a risk calculator for incident breast cancer in Black women based on epidemiologic factors (BWHS 
model).

Methods  Data from the Black Women’s Health Study, an ongoing prospective cohort study of 59,000 US Black 
women followed by biennial questionnaire since 1995, were used to calculate AUCs and 95% confidence intervals 
(CIs) for discriminatory accuracy of the BWHS model, the AA-PRS alone, and a new model that combined them. Analy-
ses were based on data from 922 women with invasive breast cancer and 1844 age-matched controls.

Results  AUCs were 0.577 (95% CI 0.556–0.598) for the BWHS model and 0.584 (95% CI 0.563–0.605) for the AA-PRS. 
For a model that combined estimates from the questionnaire-based BWHS model with the PRS, the AUC increased 
to 0.623 (95% CI 0.603–0.644).

Conclusions  This combined model represents a step forward for personalized breast cancer preventive care for US 
Black women, as its performance metrics are similar to those from models in other populations. Use of this new 
model may mitigate exacerbation of breast cancer disparities if and when it becomes feasible to include a PRS in rou-
tine health care decision-making.
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Introduction
Breast cancer mortality rates are 40% higher in Black 
women than White women in the USA, even though 
incidence rates are approximately the same [1]. Multi-
ple approaches are needed to eliminate this disparity. 
One such approach is to improve risk prediction tools so 
that Black women who are at high risk of breast cancer, 
together with their physicians, are better able to make 
informed decisions about when to begin mammographic 
screening, frequency of screening, and use of other 
screening modalities such as breast MRI. In addition, 
improved risk prediction for specific subtypes of breast 
cancer will permit targeted enrollment of Black women 
into prevention trials for medications for estrogen recep-
tor (ER)-positive or ER-negative breast cancer to increase 
the likelihood that medications developed will also ben-
efit Black women.

In previous work, we developed and validated an abso-
lute risk prediction model for breast cancer incidence 
in US Black women [2], among whom there is a higher 
proportion of ER-negative vs. ER-positive tumors than in 
US women from other racial groups. This model (Black 
Women’s Health Study (BWHS) model) used women’s 
personal and clinical characteristics to predict risk. Its 
discriminatory accuracy, as measured by the area under 
the receiver operator characteristics curve (AUC), was 
modest, with an AUC of 0.58 (95% confidence interval 
(CI) 0.56–0.59). Although this AUC is on par with meas-
ures of discriminatory accuracy for similar risk factor-
based models in predominantly White populations [3–6], 
there is a need for more accurate prediction. Multiple 
genetic risk variants, individually or combined into a 
polygenic risk score (PRS), have been shown to signifi-
cantly improve the discriminatory ability of established 
risk models based on data from White women [7–13]. 
Until 2022, attempts to derive and/or validate PRS for 
breast cancer in women of African ancestry had failed 
[14–17]. Regardless of whether the PRS had been derived 
in data from largely European ancestry populations or 
from smaller studies of African ancestry populations, 
the per standard deviation odds ratios and AUCs were 
markedly lower in populations of African ancestry than 
European ancestry [18], Asian ancestry [19], or Hispanic 
American [20] populations. Poor performance of PRS-
based models likely reflects the greater genetic variation 
and smaller linkage disequilibrium blocks in individuals 
of predominantly African ancestry and a smaller num-
ber of breast cancer cases with available genome-wide 
association study (GWAS) data. In 2022, Guo et al. used 
data from close to 10,000 breast cancer cases and 10,000 
controls of African ancestry to derive a PRS (AA-PRS) 
and conduct internal validation of its predictive perfor-
mance [21]. The odds ratio per standard deviation was 

1.34 (1.27–1.42) and the AUC corresponding to that PRS 
was 0.58, much closer to the metrics obtained in studies 
of other populations [18–20].

In the current work, we conducted the first external 
validation of this AA-PRS. We then evaluated whether 
and to what extent adding this novel AA-PRS to the 
BWHS risk factor model would improve prediction 
of five-year absolute risk of breast cancer in US Black 
women.

Methods
Study population
The BWHS is a prospective cohort study of 59,000 self-
identified Black women, aged 21–69 at baseline in 1995, 
from across the US who enrolled in the study by com-
pleting a lengthy baseline questionnaire [22]. Since then, 
biennial questionnaires that ask about medical history, 
medication use, and social, reproductive, and lifestyle fac-
tors have been used to update information on exposure 
variables and health events, including incident breast 
cancer diagnoses. Approximately 30,000 BWHS partici-
pants have provided a biospecimen (saliva or blood) that 
could be used as a source of germline DNA. The eligible 
study population for this project comprised approxi-
mately 6000 BWHS participants for whom genome-wide 
single-nucleotide polymorphism (SNP) data were availa-
ble. The study protocol was approved by the Boston Uni-
versity Institutional Review Board.

Cases
Incident cases of breast cancer in the BWHS were ascer-
tained through questionnaire self-report, linkage with state 
cancer registries, and death records. Cases were confirmed 
and tumor characteristics were determined from review 
of pathology reports and/or state cancer registry data, 
which have been obtained for over 90% of breast cancer 
cases. Eligible cases for the present analyses were women 
who were diagnosed with invasive breast cancer from 1995 
through 2019, aged 30–74 at diagnosis, had GWAS data 
available, and had not been included in derivation of the 
AA-PRS. In total, there were 922 cases, including 555 with 
ER-positive and 296 with ER-negative breast cancer; ER 
status was unknown for the remainder of the cases.

Controls
Risk set sampling was used to select two controls per 
case. Controls were free of breast cancer at the time the 
index case was diagnosed and were matched to cases on 
year of age and timing of the most recent follow-up ques-
tionnaire completed. As with the cases, potential controls 
had GWAS data available and had not been included in 
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derivation of the AA-PRS. There were 1,844 controls 
included.

Risk predictors
The BWHS breast cancer risk prediction model was 
developed using data from Black women in three large 
breast cancer case–control studies and then validated 
in prospective data from the BWHS, as described pre-
viously [2]. Model predictors include first-degree family 
history of breast cancer and prostate cancer, body mass 
index (BMI) (current and at age 18), menopausal status, 
bilateral oophorectomy, breast biopsy, oral contracep-
tive use, age at menarche, ever parous, and breastfeed-
ing. The BWHS model also includes age interactions with 
family history of breast cancer, breast biopsy, and age at 
menarche, and an interaction of menopausal status with 
current BMI.

Development of the AA-PRS by Gao et  al. has been 
described elsewhere [21]. Separate PRS were developed 
for each of ER-positive and ER-negative breast cancer 
as the weighted linear combination of a PRS developed 
in data from women of African ancestry and a PRS pre-
viously developed in data from women of European 
ancestry. A PRS for overall breast cancer was then con-
structed by averaging the ER-positive and ER-negative 
PRS, weighted by the study subtype proportions. BWHS 
samples from breast cancer cases and controls had been 
previously genotyped on the Illumina MEGA array and 
were imputed to the same reference panel as the samples 
in Gao et al. Genotype or imputation values for the vari-
ants identified by Gao et al. were used for calculation of a 
PRS in each of 922 BWHS cases and 1844 controls after 
removal of 23 SNPs with low imputation scores in BWHS 
data. There were 56,920 variants included in the PRS for 
breast cancer overall, 29,299 for the ER-positive breast 
cancer PRS, and 28,392 for the ER-negative breast can-
cer PRS. None of the 922 BWHS cases and 1844 controls 
contributed to the work by Gao et  al., thus ensuring an 
external validation sample.

Principal components of the BWHS genotype data 
were calculated with smartpca in the EIGENSOFT pack-
age [23], after pruning SNPs in high linkage disequilib-
rium (pairwise correlation > 0.1) and removing SNPs with 
minor allele frequency < 0.02 and more than 0.5% miss-
ing. We assessed the associations of the first 10 principal 
components with breast cancer risk by including them 
jointly in a logistic regression model and retained those 
associated with p < 0.05. Principal components from the 
study population rather than principal components from 
the data analyses by Gao et al. were used because there 
may have been allele frequency differences in the two 
populations stemming from their different geographic 
distributions.

Statistical methods
External validation of AA‑PRS
Associations between PRS and invasive breast cancer 
risk in the BWHS, overall and by ER status, were evalu-
ated in conditional logistic regression analyses, with and 
without adjustment for principal components associated 
with breast cancer risk (1, 3, and 7). Percentile catego-
ries were constructed based on the distribution of PRS in 
the controls (≤ 10%, 10-20%,  20–40%, 40–60%, 60–80%, 
80–90%, and > 90%). Odds ratios (ORs) and correspond-
ing 95% CIs were computed for percentiles of the PRS 
with 40–60% as the reference category. Additionally, ORs 
and 95% CIs for a one standard deviation (SD) increase in 
continuous PRS were calculated. For ER-specific analy-
ses, we used the ER-specific PRS from Gao et al. rather 
than the overall PRS. All statistical analyses were per-
formed using SAS 9.4 (Cary, NC).

Addition of PRS to the risk factor‑based BWHS prediction 
model
We first applied the BWHS risk prediction calculator 
to derive a five-year absolute risk estimate for each par-
ticipant. We log-transformed the absolute risks and then 
estimated the concordance index (c-index, which for ease 
of exposition we also refer to as “AUC”), accommodating 
the matched study design, for the risk of invasive breast 
cancer based on the log absolute risks derived from the 
BWHS model alone [24]. We then similarly calculated 
the AUC for the PRS. Missing data was addressed with 
multiple imputation (IVEware 0.3). C-indices and boot-
strapped standard errors were calculated for each of 10 
imputed datasets and combined with Rubin’s rules [25, 
26]. We next examined the correlation of the PRS with 
the BWHS risk estimates. We then computed a score 
for the BWHS model plus PRS, using a leave-one-out 
approach. We left out one matched set at a time and fit 
a conditional logistic regression to the remaining sets, 
including terms for the BWHS model and PRS. The 
parameter estimates from this regression were then 
applied to the coefficients of the participants in the set 
left out. This procedure was continued for the remaining 
sets and an AUC was calculated for this score. Compara-
ble AUCs were also calculated separately for ER-positive 
and ER-negative breast cancer and in women under age 
45 and older women.

We calculated net reclassification improvement (NRI) 
following the approach by Pencina et  al. for case–con-
trol studies, as follows [27]. We fit two logistic regres-
sion models to the case–control data: one including the 
log-transformed BWHS risk estimates and one including 
both the log-transformed BWHS risk estimates and the 
PRS. We then adjusted the intercepts of the models by 
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adding log{2ρ/(1− ρ)} , where 2 corresponds to the con-
trol to case ratio in the study and the constants ρ were 
the 5-year age-specific breast cancer incidence rates for 
2000–2016 for non-Hispanic Black women from the 
NCI SEER program. This intercept adjustment ensures 
that the logistic regression models based on BWHS and 
BWHS plus PRS are calibrated to predict 5-year age-
specific breast cancer incidence in US Black women. We 
then used risk cut points 1.66% and 2.5% to calculate the 
NRI [28]. We calculated the NRI for each imputed data-
set and averaged their values to obtain the final NRI esti-
mate. The variance was computed using Rubin’s rules 
[25]. For presenting the reclassification table (Table  3), 
we averaged the probability estimates for each woman 
over all imputations.

Results
External validation of AA‑PRS
As shown in Fig. 1 and Additional file 1: Table S1, there 
were 922 BWHS breast cancer cases and 1,844 controls 
available for validation of the PRS. Because association 
estimates were almost identical in analyses with and 
without adjustment for principal components, we pre-
sent results without such adjustment. For overall breast 
cancer, the OR per SD was 1.42 (95% CI 1.31–1.54) and 
the AUC was 0.584 (95% CI 0.563–0.605). The OR for 
women in the top decile of the PRS relative to women 

at average risk (40–60th percentile) was 2.18 (95% CI 
1.65–2.89). The per standard deviation OR for ER-posi-
tive breast cancer, based on 555 cases and using the ER-
positive specific PRS, was 1.51 (95% CI 1.36–1.68), with 
an AUC of 0.595 (95% CI 0.571–0.620). For ER-negative 
breast cancer, the comparable OR was 1.35 (95% CI 1.18–
1.54) and the AUC was 0.576 (95% CI 0.549–0.603).

Addition of PRS to the BWHS risk factor‑based prediction 
model
Table  1 shows the factors that were included in the 
BWHS absolute risk prediction calculation, with preva-
lence of each factor by case–control status. Compared 
with controls, cases were more likely to have a first-
degree family history of breast cancer and to have had 
a breast biopsy, and were less likely to have been over-
weight or obese at age 18 or to have had a bilateral 
oophorectomy. Cases had a higher mean overall PRS 
than controls (0.23 vs −0.12). They also were estimated 
to have a higher five-year absolute risk (1.46% in cases vs 
1.32% in controls). There was little correlation between 
the BWHS predicted risks and the PRS, with a Pearson 
correlation coefficient of 0.039.

As shown in Table 2, breast cancer risk prediction was 
improved with the addition of the AA-PRS. The AUC 
for overall breast cancer was 0.577 from the BWHS risk 
prediction model alone; the addition of the AA-PRS 

Fig. 1  Odds ratios for associations of polygenic risk score (PRS) quantiles with risk of invasive breast cancer, overall, and by estrogen receptor status 
(ER+ , ER−). Reference category is middle quintile
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Table 1  Participant characteristics, including factors in the BWHS risk prediction model, by case–control status

Cases (n = 922) (%) Controls (n = 1844) (%)

First-degree family history of breast cancer

Age < 50 years

 No 275 (79.3) 575 (82.9)

 Relative diagnosed age ≥ 50 years 46 (13.3) 100 (14.4)

 Relative diagnosed age < 50 years or two relatives 26 (7.5) 19 (2.7)

Age ≥ 50 years

 No 416 (72.3) 924 (80.3)

 Relative diagnosed age ≥ 50 years 109 (19.0) 185 (16.1)

 Relative diagnosed age < 50 years or two relatives 50 (8.7) 41 (3.6)

First-degree family history of prostate cancer

 No 728 (79.0) 1509 (81.8)

 Yes 194 (21.0) 335 (18.2)

Age < 50 years

 Age at menarche < 14 years 295 (85.3) 551 (80.1)

 Age at menarche ≥ 14 years 51 (14.7) 137 (19.9)

Age ≥ 50 years

 Age at menarche < 14 years 483 (84.0) 887 (77.6)

 Age at menarche ≥ 14 years 92 (16.0) 256 (22.4)

Breastfeeding (parous women only)

 Never 382 (53.1) 840 (57.3)

 Ever 337 (46.9) 625 (42.7)

Oral contraceptive use

 Never or < 5 years 547 (59.3) 1266 (68.7)

 ≥ 5 years 375 (40.7) 578 (31.3)

Bilateral oophorectomy

 No 818 (88.7) 1625 (88.1)

 Yes 104 (11.3) 219 (11.9)

BMI at age 18 years, kg/m2

 < 25 830 (91.3) 1562 (86.3)

 ≥ 25 79 (8.7) 247 (13.7)

Premenopausal

 BMI < 30 206 (64.2) 423 (62.9)

 BMI ≥ 30 115 (35.8) 249 (37.1)

Postmenopausal

 BMI < 30 214 (57.1) 487 (58.7)

 BMI ≥ 30 161 (42.9) 342 (41.3)

Age < 50 years

 Never biopsy or benign breast disease 247 (71.2) 534 (76.9)

 Ever biopsy or benign breast disease 100 (28.8) 160 (23.1)

Age ≥ 50 years

 Never biopsy or benign breast disease 300 (52.2) 702 (61.0)

 Ever biopsy or benign breast disease 275 (47.8) 448 (39.0)

Mean age (SD) 52.7 (9.3) 52.7 (9.3)

Polygenic risk score, mean (SD) 0.23 (1.00) − 0.12 (0.98)

BWHS 5-year breast cancer risk percent, mean (SD) 1.46 (0.67) 1.32 (0.57)
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increased it to 0.623, an increase of 0.046 units. Increases 
in the AUCs with the addition of a PRS were 0.033 for 
ER-positive breast cancer and 0.062 for ER-negative 
breast cancer, and were 0.062 and 0.044,  respectively, 
among women age <45 and age ≥45.

Table  3 shows classification of predicted risk by the 
two models for cases and controls. The net reclassifica-
tion index was 9.2%, based on the sum of a classification 
improvement of 11.8% in cases and −2.6% in controls.

Table 2  Discriminatory accuracy of BWHS risk model alone, polygenic risk score (PRS) alone, and model that combines both

AUC (95% CI) Increase in AUC from combined versus BWHS 
model (95% CI)

p-value

All invasive breast cancers (N = 922)

 BWHS model only 0.577 (0.556–0.598)

 PRS only 0.584 (0.563–0.605)

 BWHS model + PRS 0.623 (0.603–0.644) 0.046 (0.023–0.069) < 0.0001

ER-positive breast cancer (N = 555)

 BWHS model only 0.594 (0.572–0.617)

 PRS only 0.595 (0.571–0.620)

 BHS model + PRS 0.627 (0.603–0.651) 0.033 (0.008–0.057) 0.0099

ER-negative breast cancer (N = 296)

 BWHS model only 0.536 (0.509–0.563)

 PRS only 0.576 (0.549–0.603)

 BWHS model + PRS 0.597 (0.568–0.627) 0.061 (0.031–0.093) 0.0001

Age < 45 years at breast cancer diagnosis or control selection (N  = 208)

 BWHS model only 0.546 (0.507–0.586)

 PRS only 0.587 (0.551–0.623)

 BWHS model + PRS 0.608 (0.569–0.647) 0.062 (0.022–0.101) 0.0025

Age ≥ 45 years at breast cancer diagnosis or control selection (N = 714)

 BWHS model only 0.586 (0.563–0.609)

 PRS only 0.583 (0.559–0.608)

 BWHS model + PRS 0.630 (0.606–0.653) 0.044 (0.020–0.068) 0.0003

Table 3  Reclassification for BWHS predicted 5-year risk versus BWHS + PRS predicted 5-year risk

Net reclassification improvement (95% CI) = 0.092 (0.065–0.119)

For cases, reclassification = 0.118; for controls, reclassification = − 0.026

Cases BWHS + PRS Total

 < 1.66% 1.66–< 2.5%  ≥ 2.5%

BWHS model only

 < 1.66% 503 94 23 620

 1.66–< 2.5% 72 134 74 280

 ≥ 2.5% 2 8 12 22

 Total 577 236 109 922

Controls BWHS + PRS Total

 < 1.66% 1.66–< 2.5%  ≥ 2.5%

BWHS model only

 < 1.66% 1146 126 13 1285

 1.66–< 2.5% 185 245 106 536

 ≥ 2.5% 4 9 10 23

 Total 1335 380 129 1844
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Discussion
Polygenic risk scores developed in women of Euro-
pean ancestry have not performed as well in women of 
African ancestry [14, 29, 30]. Gao et al. moved the field 
forward by using GWAS data from multiple studies of 
African ancestry women to develop and test a PRS for 
breast cancer overall and for ER-specific breast can-
cer, producing for the first time a PRS with discrimina-
tory accuracy close to what has been observed in other 
populations [18, 20]. Here, we present results of the first 
external validation of that AA-PRS, with an AUC of 0.58 
and OR of 1.41 for each standard deviation unit of risk, 
similar to the AUC 0.58 and OR 1.34 from the previously 
published internal validation [21]. Until now, the use of 
a PRS for improved breast cancer risk prediction would 
have increased racial disparities in breast cancer because 
women of African ancestry would receive little benefit, 
if any, from a PRS derived from predominantly Euro-
pean ancestry populations. Now, with external valida-
tion of this AA-PRS in a large cohort of US Black women, 
there is finally a validated PRS that can be used in this 
population.

The best performing PRS for women of European 
ancestry was developed in the Breast Cancer Association 
Consortium (BCAC). This 313-SNP PRS had an AUC of 
0.630 (95% CI 0.628–0.651) and an OR per SD unit of PRS 
of 1.61 (95% CI 1.57–1.65) for overall breast cancer [18]. 
In a collaborative study of US Latina women and Latin 
American women, Shieh et  al. constructed a 180-SNP 
PRS and reported an AUC of 0.63 (95% CI 0.62–0.64) 
in internal validation [20]. The OR per SD unit increase 
was 1.58 (95% CI 1.52–1.64) and the OR for those above 
the 90th percentile of PRS compared to women in the 
40–60th percentile group was 2.10 (95% CI 1.85–2.39). In 
the present study of women of African ancestry, ORs for 
above the 90th percentile versus the 40–60th percentile 
group were 2.18 for overall breast cancer, 2.22 for ER+ 
breast cancer, and 1.84 for ER- breast cancer.

We also examined the utility of adding this AA-PRS to 
the BWHS breast cancer risk prediction model, which 
was previously developed and validated in data from US 
Black women [2]. For all invasive breast cancer, the addi-
tion of the AA-PRS improved discriminatory accuracy, 
increasing the AUC from 0.58 (BWHS model alone) to 
0.62. It was not possible to estimate calibration of the 
combined model because of the case–control design and 
lack of prospective cohort data with genetic informa-
tion for validation, but in the original validation of the 
BWHS breast cancer risk prediction model, the ratio of 
expected numbers of cancers calculated from the model 
and observed numbers of cancers was 1.01 (0.95–1.07), 
indicating excellent overall calibration [2]. We postulate 
that a new, combined absolute breast cancer risk model 

will likely also be well calibrated, but that would need to 
be demonstrated in data with prospective follow-up. The 
addition of a validated 313-SNP PRS to various breast 
cancer risk prediction tools has been evaluated in mul-
tiple populations of European ancestry women [11–13, 
18, 31–35]. In an Australian prospective cohort study, the 
addition of the 313-SNP PRS improved the AUC from 
0.57 to 0.62 for the IBIS model and from 0.56 to 0.62 for 
the BOADICEA model [11]. In a combined analysis of 
15 cohorts of European ancestry women, the addition 
of the 313-SNP PRS to the iCARE-Lit model improved 
the AUC from 0.56 to 0.64 in women under 50 years of 
age and from 0.57 to 0.64 in women 50 years and older 
[12]. In data from the Nurses’ Health Study and Nurses’ 
Health Study II, the addition of a PRS improved the AUC 
for the BCRAT model from 0.56 to 0.61 in premenopau-
sal women, from 0.55 to 0.61 in postmenopausal women 
not using hormone therapy, and from 0.58 to 0.62 in 
postmenopausal women using hormone therapy [36]. 
Results concerning magnitude of the AUC and increase 
in AUC after the addition of the PRS in the current study 
of African ancestry women are very similar to results 
from these large studies of European ancestry women.

Prior evaluation of the addition of a PRS to breast can-
cer risk prediction models in women of African ances-
try has been limited. Allman et  al.  [39] used data from 
the Women’s Health Initiative to calculate AUCs after 
the addition of a PRS to two established risk predic-
tion models that included epidemiologic factors only, 
the BCRAT [37] and the IBIS model  [38]. The 75-SNP 
PRS included SNPs associated with breast cancer risk in 
data from women of European ancestry. The addition of 
the PRS increased the AUC in both models, from 0.56 
to 0.59 in the BCRAT and from 0.51 to 0.55 in the IBIS 
model. Most recently, Tshiaba et  al. have evaluated the 
addition of a cross-ancestry PRS [40] to the IBIS model 
in data from the Women’s Health Initiative and the UK 
Biobank [41]. Across all ancestry groups, the addition of 
the PRS to the IBIS model increased the AUC for predic-
tion of risk in the next five years from 0.56 to 0.65 in the 
WHI and from 0.57 to 0.63 in the UK Biobank. However, 
performance was markedly worse in women of African 
ancestry; the AUC increased from 0.55 to 0.57 in WHI 
data. There were too few breast cancer cases (n = 19) 
for five-year risk prediction among Black/Black British 
women in the UK Biobank.

The present study included 296 ER-negative and 555 
ER-positive invasive breast cancer cases, allowing for 
validation of the previously published ER-specific PRS 
and examination of whether adding an ER-specific PRS 
improves discriminatory accuracy. The BWHS risk cal-
culator alone had a higher discriminatory accuracy for 
ER-positive versus ER-negative breast cancer in the 
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validation data set (AUC 0.59 and 0.54, respectively), 
similar to what has been found in other studies that 
evaluated epidemiologic risk models separately for ER-
positive and ER-negative breast cancer [2, 42–44]. This 
is not surprising because many of the factors included 
in the models (e.g., hormone replacement therapy, age 
at menarche, high body mass index after menopause, 
bilateral oophorectomy) are more strongly associated 
with ER+ breast cancer, which has a hormonal etiology. 
Improvements in AUC with the addition of an ER-spe-
cific PRS were somewhat greater for ER-negative breast 
cancer, with an increase in 0.061 units versus an increase 
in 0.033 units for ER-positive cancer. This finding dem-
onstrates the value of identifying common genetic vari-
ants associated with risk of ER-negative breast cancer in 
women of African ancestry.

A limitation of our study is the lack of data on mam-
mographic density and endogenous hormone levels, 
both of which are related to breast cancer risk. When 
available, these factors could improve discriminatory 
accuracy for the purposes of shared decision-making on 
use of anti-estrogenic medications for women at high 
risk of ER-positive breast cancer and for eligibility to be 
included in future breast cancer prevention trials [36, 45, 
46]. Data on hormone levels will not be useful for pur-
poses of shared decision-making on timing and type of 
breast cancer screening in the foreseeable future due 
to the high costs of the assays. Incorporation of mam-
mographic density data or data on texture features of 
the breast beyond density will be useful for women who 
have already started screening, but not for those, includ-
ing many young women, who have not yet had their first 
mammogram.

Conclusions
In summary, by combining estimates from the previ-
ously validated BWHS breast cancer risk prediction 
model with the newly validated AA-PRS, we now have 
a combined model that provides discriminatory accu-
racy higher than the BWHS model alone and similar in 
magnitude to combined models in women of European 
ancestry. Cross-ancestry models are being put forth as 
valuable for multiple ancestral populations, but, to date, 
show relatively poor performance in African ancestry 
populations [41]. To develop a cross-ancestry PRS that 
works well for all major population groups, it will be 
necessary to have larger numbers of cases and controls 
from African ancestry populations and from other popu-
lations currently underrepresented in genetics research. 
Until then, the combined model developed here rep-
resents a critical step forward for personalized breast 
cancer preventive care for US Black women and has the 

potential to mitigate exacerbation of racial disparities in 
breast cancer as PRS become more widely used in clini-
cal settings.
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