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Abstract 

Background  Generalizable population-based studies are unable to account for individual tumor heterogeneity that 
contributes to variability in a patient’s response to physician-chosen therapy. Although molecular characterization 
of tumors has advanced precision medicine, in early-stage and locally advanced breast cancer patients, predicting a 
patient’s response to neoadjuvant therapy (NAT) remains a gap in current clinical practice. Here, we perform a study 
in an independent cohort of early-stage and locally advanced breast cancer patients to forecast tumor response to 
NAT and assess the stability of a previously validated biophysical simulation platform.

Methods  A single-blinded study was performed using a retrospective database from a single institution (9/2014–
12/2020). Patients included: ≥ 18 years with breast cancer who completed NAT, with pre-treatment dynamic contrast 
enhanced magnetic resonance imaging. Demographics, chemotherapy, baseline (pre-treatment) MRI and pathologic 
data were input into the TumorScope Predict (TS) biophysical simulation platform to generate predictions. Primary 
outcomes included predictions of pathological complete response (pCR) versus residual disease (RD) and final volume 
for each tumor. For validation, post-NAT predicted pCR and tumor volumes were compared to actual pathological 
assessment and MRI-assessed volumes. Predicted pCR was pre-defined as residual tumor volume ≤ 0.01 cm3 (≥ 99.9% 
reduction).

Results  The cohort consisted of eighty patients; 36 Caucasian and 40 African American. Most tumors were high-
grade (54.4% grade 3) invasive ductal carcinomas (90.0%). Receptor subtypes included hormone receptor positive 
(HR+)/human epidermal growth factor receptor 2 positive (HER2+, 30%), HR+/HER2− (35%), HR−/HER2+ (12.5%) and 
triple negative breast cancer (TNBC, 22.5%). Simulated tumor volume was significantly correlated with post-treatment 
radiographic MRI calculated volumes (r = 0.53, p = 1.3 × 10–7, mean absolute error of 6.57%). TS prediction of pCR 
compared favorably to pathological assessment (pCR: TS n = 28; Path n = 27; RD: TS n = 52; Path n = 53), for an overall 
accuracy of 91.2% (95% CI: 82.8% – 96.4%; Clopper–Pearson interval). Five-year risk of recurrence demonstrated similar 
prognostic performance between TS predictions (Hazard ratio (HR): − 1.99; 95% CI [− 3.96, − 0.02]; p = 0.043) and clini‑
cally assessed pCR (HR: − 1.76; 95% CI [− 3.75, 0.23]; p = 0.054).

Conclusion  We demonstrated TS ability to simulate and model tumor in vivo conditions in silico and forecast volume 
response to NAT across breast tumor subtypes.
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Introduction
Despite pharmacologic and genomic progress in oncol-
ogy, tumor heterogeneity hinders the ability to opti-
mize therapy [1]. Molecular tumor characterization has 
advanced targeted therapeutics; despite this, expression 
of target biomarkers in any given patient does not neces-
sarily ensure a predictable or durable response to therapy. 
Further compoudning challenges to optimizing therapy 
include the inability, a process of escalating or de-esca-
lating therapy when it will result in better or compara-
ble results with similar or fewer side effects, include the 
inability of large-scale trials with finite enrollment crite-
ria to adequately address individual tumor characteristics 
(morphology [2, 3], vascularity [4, 5], location [6], tumor 
microenvironment [7]) and deliver personalized onco-
logic treatment recommendations that comprehensively 
address these variations in individual tumor conditions 
resulting from tumor heterogeneity.

Increasingly neoadjuvant therapy is being employed 
and International [8] and European [9] standard-of-
care (SOC) guidelines for clinical practice continue to 
evolve. In the USA, these SOC regimens are designated 
by guidelines set forth by the National Comprehensive 
Cancer Network (NCCN) [10]. A rising number of SOC 
regimens, including new drug approvals and combina-
tions of existing drugs, have become available for a single 
indication. These expanded coverage options for breast 
cancer are largely driven by an accelerated awareness of 
the complexity of tumor biology and a quest to increase 
offerings to the medical oncology community. What 
remains unknown is which SOC treatment will engen-
der the best response in an individual patient and provide 
the best opportunity to achieve pathological complete 
response or a reduction in residual tumor burden. While 
some ineffectiveness may be attributed to suboptimal-
guideline adherence [11, 12], even with adherence using 
clinical decision support systems to guide the decision-
making process, clinical outcomes can vary within any 
sub-cohort given the same regimen. [13]

An innovative approach is needed to forecast treatment 
response and identify the likelihood of success of any 
chosen treatment. Accurately predicting tumor response 
affords numerous opportunities for the clinician in terms 
of increasing confidence around treatment selection, by 
providing information at the time of diagnosis to assist 
in understanding the treatment plan. This understanding 
will be particularly meaningful for patients who may be 
exposed to additional toxicity but would respond to an 

escalated regimen or those who may benefit from treat-
ment de-escalation with comparable disease outcomes 
[14].

Currently, most methodologies appropriate clini-
cal outcomes by stratifying patients according to risk 
of recurrence (ROR) and overall survival (OS) based on 
risk factors identified on retrospective analyses or -omics 
data [15–18]. However, modern day computational biol-
ogy now affords a unique opportunity to use cutting-edge 
mathematical modeling to approximate in  vivo biologi-
cal processes in silico with a high degree of accuracy. 
Much of the field of perfusion kinetics [19, 20] has been 
derived from advances in medical imaging which now 
makes it possible to acquire dynamic, high spatial resolu-
tion images that have advanced multi-scale tumor mod-
eling potential. These multi-scale computational models 
are now able to simulate and closely mirror fundamental 
cancer biological processes and predict spatiotemporal 
changes [21]. The next logical step in resolving the gap is 
in its predictive capacity to capture the dynamic environ-
ment on the time axis to forecast spatiotemporal changes 
of a patient’s tumor as it responds to chemotherapeutic 
agents.

Here, we perform an independent assessment of a pre-
viously validated biophysical tumor modeling platform 
[22], TumorScope Predict (TS). TS constructs a three-
dimensional (3D), dynamic model of an individual’s 
tumor. By integrating modeling of tumor morphology 
and metabolism, the platform simulates biological pro-
cesses and interactions that take place within the tumor 
microenvironment including vascularity, nutrient avail-
ability, drug delivery, sensitivity and resistance [22]. The 
integration of these complex interactions enables multi-
modal forecasting of tumor response over time to a given 
NAT.

In the current study, we further validate the platform’s 
ability to accurately evaluate and predict pCR, a surro-
gate marker for long-term outcome [23], in an independ-
ent breast cancer cohort receiving NAT for early-stage 
or locally advanced breast cancer (hereafter, referred 
to  collectively as “early stage”). Additionally, we have 
undertaken efforts to further our understanding of the 
predictive capacity of TS, spanning residual tumor mor-
phology, and ROR for breast cancer subtypes.



Page 3 of 13Peterson et al. Breast Cancer Research           (2023) 25:54 	

Materials and methods
Study population
Patients included in the study were age 18 or older, diag-
nosed with breast cancer, from September 2014 through 
December 2020, treated at a single institution who com-
pleted NAT with a SOC chemotherapy regimen, and had 
pre-treatment T1-weighted dynamic contrast enhanced 
magnetic resonance imaging (DCE-MRI). Patients with 
all subtypes and histology of breast cancer were included 
as well as those with bilateral breast tumors. One bilat-
eral breast cancer case was analyzed as two separate 
tumors in the model, each with a distinct volumetric 
and pCR prediction; characteristics for the two tumors 
were analyzed to determine underlying biology. Retro-
spective data encompassing imaging and baseline diag-
nostic information were separated temporally into two 
time points: pre-treatment and post-treatment. The pre-
treatment data (timepoint 1) was used for all analysis 
and computation. The post-treatment data (timepoint 2) 
was used for validation. Outcomes were single-blinded 
and run prospectively using timepoint 1. As de-identi-
fied patient data was used for the study; an institutional 
review board (IRB) exemption was granted.

A total of 81 tumors from 80 patients were analyzed. 
Patients with metastatic disease, those receiving neoad-
juvant endocrine therapy alone, or those on clinical trials 
with experimental therapies or regimens were excluded 
from the study. The American Joint Committee on Can-
cer (AJCC) 8th edition staging system was used for all 
clinical and pathological assessments reported herein 
[15].

Tumor segmentation and model design
Briefly, the previously described TS platform [22] com-
bines artificial intelligence for tumor segmentation from 
the surrounding tissues with biophysical simulations to 
simulate the tumor response to therapy. It constructs 
a 3D virtual (in silico) tumor model of a patient (e.g., a 
virtual “twin”) that can be used to simulate how a patient 
will respond to a particular therapy using only baseline 
demographic, pathological, and medical imaging data. To 
create the 3D model, a pre-treatment DCE-MRI is pro-
cessed using a semantic segmentation convolutional neu-
ral network (CNN)—a type of deep learning model with 
multiple successive layers that analyzes a neighborhood 
of voxels (e.g., pixels) and distils properties of them in 
increasingly abstract ways to assign a single class to each 
voxels [25]—to create a 3D representation of the breast 
tissues. In this case, the CNN is a multi-class volumetric 
residual UNet (e.g., a ResVNet [26], that examines each 
voxel in the MRI and classifies it as comprising primar-
ily of tumor, vasculature, fibroglandular tissue, adipose, 
skin, or chest, producing a grid of cubic voxels that are 
0.5 mm3 (the “spatial model”; see Fig. 1C, D) which forms 
the basis of the virtual twin. Briefly, the ResVNet consists 
of three encoding tiers, a bottleneck, and three decoding 
tiers and takes as input a 48 × 48 × 96 cubic voxel region 
with three channels (pre-contrast, early and late post-
contrast) of the DCE-MRI. It was trained using fivefold 
cross-validation on the training set with a cross-entropy 
loss function; then, each fold was combined via weighted 
geometric means to produce the final model weights. 
None of the patients in this study were used in training 

Fig. 1  CONSORT flow diagram
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the CNN. A recent publication describes the model train-
ing and validation [22].

Once the 3D model is created, the virtual twin is fur-
ther personalized by incorporating patient demographic 
(e.g., age, race/ethnicity), and pathological character-
istics (e.g., T (tumor size) and N (lymph node spread) 
stage, estrogen receptor (ER) percent staining, proges-
terone receptor (PR) percent staining, HER2 status, 
grade, histology type). These are used to select a math-
ematical model representing the patient’s tumor biology. 
Tumor biology algorithms were developed to describe 
the tumor’s requirements for nutrients (e.g., how quickly 
they consume nutrients and produce byproduct chemi-
cals), interaction with neighboring healthy tissues (e.g., 
competition for, and cross feeding of, nutrients with fatty 
and glandular tissues), intrinsic growth rate (e.g., how 
fast the tumor doubles in size when consuming differ-
ing amounts of available nutrients), and susceptibility 
to drugs (e.g., pharmacodynamics). The combination of 
the tumor biology algorithms and the 3D spatial model 
constitutes the whole patient-specific virtual twin. The 
details of this process are described previously [22].

A completed virtual twin can then be simulated using 
the previously described biophysical model [22] with a 
NAT drug regimen. The simulation progresses by dos-
ing drugs at regular intervals as defined by the National 
Comprehensive Cancer Network (NCCN) guidelines 
[10]. Drug dosing is captured by pharmacokinetic equa-
tions, which introduce the drug into the tissues according 
to a model based on the local vascular perfusion in a time 
dependent manner [22]. Vascular perfusion at each voxel 
is computed via a Tofts-like model that is parameter-
ized from the DCE-MRI [27]. The simulation progresses 
by computing the local nutrient environment (i.e., con-
centration of metabolites like glucose, oxygen, alanine, 
etc.) and drugs at a specific time during treatment (see 
Fig. 1G). The growth/death rate of the tumor is computed 
as a function of the local nutrient and drug concentra-
tions via the tumor biology model. The tumor size and 
shape are updated in response to the growth/death rate, 
and time is advanced by an increment of 1 h. This process 
is repeated until the entire course of treatment has been 
simulated (e.g., 60–180 days depending on drug regimen) 
[28–31]. The result is a 4D (3D + time) simulated picture 
of how the tumor responds to treatment.

In this study, the drug regimen prescribed for a patient 
by the physician was simulated. In total, 81 tumors in 80 
patients were simulated. The final pre-surgery simulation 
tumor size and shape (see Fig. 1F) are used to determine 
whether the patient has pCR or RD as described in the 
next section.

Model volume prediction and validation
Simulation volume for the model was defined as the sum 
of all volume fractions across all voxels that have disease. 
This sum was then multiplied by the physical volume of 
the voxel (in mm3) to generate the predicted, post-treat-
ment volume.

For the radiologist-assessed volume, the tumor region 
of interest (ROI) was depicted (segmented) in 3D. Then, 
the number of voxels included in the ROI was summed 
and multiplied by the physical volume of the voxel (in 
mm3). Statistical analysis comparing the two models was 
then carried out.

Statistical analysis
Virtual twins (of each individual tumor) were simulated 
with the physician-prescribed regimen. All analyses were 
performed on individual tumors; for patients with bilat-
eral cancer, separate predictions were made for the tumor 
in each breast. Baseline demographics between the pCR 
and RD subgroups were compared using a chi-squared 
test (Table 1). Primary outcomes were the pCR/residual 
prediction along with predicted final volume for each 
tumor, which were both assessed at the timepoint 2 (e.g., 
the total simulated time duration was timepoint 2-time-
point 1). pCR predictions were compared to pathologist 
assessments reported in post-surgery pathology notes. 
Predicted volumes were compared to volumes segmented 
from post-treatment (timepoint 2, pre-surgery) MRIs. 
Segmented volumes were assessed by a board-certified 
radiologist (10 + years) specializing in breast cancer.

The primary outcome metrics of positive predictive 
value (PPV), negative predictive value (NPV), sensitivity, 
specificity, and accuracy for pCR in the overall popula-
tion—as well as in individual molecular subtypes [HR+/
HER2−, HR+/HER2+, HR−/HER2+, and triple negative 
breast cancer (TNBC)]—were computed along with 95% 
confidence intervals (CI) estimated using the Clopper-
Pearson exact binomial interval [32]. The accuracy of 
both residual tumor volume and percentage reduction in 
tumor volume as predictors of pCR was measured with 
the area under the receiver operating characteristic curve 
(AUROC). A pre-defined cutoff was used for binary pCR 
prediction; namely, a residual predicted tumor volume 
less than or equal to 0.01 cm3 or a greater than 99.9% 
reduction in predicted final tumor volume compared 
to diagnosis was considered pCR. This cutoff was pre-
defined from feasibility studies of over 600 patients [22, 
29, 33–36]. Predicted pCR was compared to standard 
pathologist assessments of pCR, defined as ypT0N0 per 
the AJCC staging system 8th edition [24]. To explore the 
ability of TS-predicted pCR to discriminate event-free 
survival (EFS), a long-rank test between survival curves 
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for predicted pCR and predicted residual disease (RD) 
patients was used.

TS predictions were also correlated with radio-
graphic response, assessed with the Pearson’s correlation 

Table 1  Patient baseline demographics

Overall (n = 80) Residual (n = 53) pCR (n = 27) p value (corrected)

Age, mean (SD) 53.4 (10.2) 54.2 (9.8) 51.8 (11.1) 0.2

Height, mean (SD) 64.7 (2.4) 64.7 (2.4) 64.6 (2.5) 0.42

Race, n (%)

 African
American

36 (45.0) 22 (41.5) 14 (51.9) 0.04

 Asian 2 (2.5) 1 (1.9) 1 (3.7)

 Caucasian 40 (50.0) 29 (54.7) 11 (40.7)

 Hispanic 1 (1.3) 1 (3.7)

 Missing 1 (1.3)

Histology, n (%)

 Invasive Ductal  Carcinoma 72 (90.0) 49 (92.5) 23 (85.2)  < 0.008

Invasive Lobular Carcinoma 7 (8.8) 4 (7.5) 3 (11.1)

 Metaplastic Carcinoma 1 (1.3) 1 (3.7)

Receptor status n (%)

 HR+/HER2+ 24 (30.0) 15 (28.3) 9 (33.3)  < 1 × 10–11

 HR+/HER2− 28 (35.0) 24 (45.3) 4 (14.8)

 HR−/HER2+ 10 (12.5) 6 (11.3) 4 (14.8)

 TNBC 18 (22.5) 8 (15.1) 10 (37.0)

Grade*, n (%)

 1 4 (5.0) 4 (7.5) 0.02

 2 27 (33.8) 19 (35.8) 8 (29.6)

 2;3 4 (5.0) 2 (3.8) 2 (7.4)

 3 42 (52.5) 25 (47.2) 17 (63.0)

 Missing 3 (3.8) 3 (5.7)

Tumor stage, n (%)

 T1 3 (3.8) 2 (3.8) 1 (3.7)  < 1 × 10–3

 T2 57 (71.3) 37 (69.8) 20 (74.1)

 T3 19 (23.8) 13 (24.5) 6 (22.2)

 T4 1 (1.3) 1 (1.9)

Nodal stage, n (%)

 N0 24 (30.0) 16 (30.2) 8 (29.6) 0.85

 N1 48 (60.0) 32 (60.4) 16 (59.3)

 N2 8 (10.0) 5 (9.4) 3 (11.1)

Regimen, n (%)

 AC-CFU 1 (1.3) 1 (1.9)  < 1 × 10–8

 AC-T 1 (1.3) 1 (3.7)

 ddAC-T 9 (11.3) 8 (15.1) 1 (3.7)

ddAC-wT 22 (27.5) 11 (20.8) 11 (40.7)

 T 1 (1.3) 1 (1.9)

 TC 10 (12.5) 9 (17) 1 (3.7)

 TCH 2 (2.5) 2 (3.8)

 TCHP 32 (40.0) 19 (35.8) 13 (48.1)

 wT-ddAC 1 (1.3) 1 (1.9)

 wTCarbo-ddAC 1 (1.3) 1 (1.9)
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coefficient with significance tested using the Fisher trans-
formation. Statistics were computed with the Python 
package statsmodels v0.12.2. All statistical testing was 
done with α = 0.05, and false discovery correction was 
performed separately for descriptive analysis of demo-
graphic data and analysis of outcome metrics (sensitiv-
ity, specificity, correlation of volume with predictions, 
and survival outcomes)—using the Benjamini–Hochberg 
method with a false discovery rate of 0.05.

Results
A total of 89 breast cancer patients who received NAT 
and had corresponding pre-treatment DCE-MRIs were 
identified at a single institution. Nine patients were 
excluded due to missing pre-treatment DCE-MRIs (5 
patients), missing cancer histology (2 patients), or miss-
ing pCR calls (2 patients) (Fig. 1).

Eighty patients were eligible for inclusion in the gen-
erated for analysis (Table 1, Fig. 1), of which 36 (45.0%) 
were self-identified as African American women and 
40 (50.0%) were self-identified Caucasian women. The 
median patient age was 53  years. Most tumors were 
high grade (54.4% grade 3) invasive ductal carcinomas 
(90%). The most common receptor subtype was HR+/
HER2− (35%); additional receptor subtypes in the cohort 
were HR+/HER2+ (30%), TNBC (22.5%), and HR−/
HER2+ (12.5%). The majority of patients were T2 (71%) 
and had either no spread to nearby lymph nodes (N0, 
30%) or spread to 1–3 axillary lymph nodes (N1, 60%). 
Within this cohort, TNBC patients experienced higher 
rates of pCR, while HR+/HER2− patients had higher 
rates of RD (p < 1 × 10–11). Most of the pCR responses 
were observed in high-grade tumors (Table  1), consist-
ent with other studies [37, 38] showing that higher grade 
(e.g., highly proliferative) tumors respond better to chem-
otherapy. Achievement of pCR varied across the different 
drug regimens that the patients received (p < 1 × 10–8).

The demographic and cancer characteristics of the 
population in this study were statistically different (χ2 
test) when compared to a previous [22] study. Patients 
differed in racial/ethnic compositions, with a lower pro-
portion of self-reported Caucasian patients (p = 0.011), 
a lower proportion of ductal versus lobular cancers 
(p = 0.005), a higher proportion of HR+/HER2+ and 
lower proportion of TNBC patients (p < 0.001). Moreo-
ver, this population had a higher proportion of grade 1 
and 2 tumors (p < 0.001), a lower proportion of T1 versus 
T2 tumors (p = 0.004), and a lower proportion of N0 ver-
sus N1 tumors (p < 0.001).

Previously acquired pre-treatment diagnostic data for 
these patients (demographic characteristics, drug regi-
men information, imaging (DCE-MRI), and pathology 
data) were input into TS (Fig. 2).

TS then modeled the weekly volumetric response 
throughout the specific treatment regimen for each 
patient up to the point of surgery. Predictions of tumor 
volume strongly correlated with radiographic assessment 
of tumor volume for follow-up (n = 53) MRIs obtained 
after treatment for each patient (r = 0.53, p < 1.3 × 10–7; 
Fig.  3A, Additional file  1: Figs. S1 and S3). It should be 
noted that follow-up MRIs were used solely for valida-
tion, not as input to TS.

The mean absolute error in predicted tumor volume 
change for all follow-up MRIs was 6.57% demonstrat-
ing high accuracy of TS predictions (Table 2, Fig. 3B top 
and C). While error in the volume is difficult to inter-
pret without a reference error rate, agreement between 
radiologically-assessed tumor size and pathologically-
assessed tumor size has been examined [39]. Simulated 
volume errors were compared to the level of agreement 
(LOA) between breast MRIs and histopathology reported 
previously [39] (Fig. 3B bottom). For both inter-regimen 
and post-treatment MRI scans the mean volume error 
remained under 3.7% (Table 2) with most of the error dis-
tribution within the LOA.

Based on simulated tumor volumetric response, TS 
was then evaluated for its ability to predict pCR via the 
pre-defined tumor volume threshold 0.01 cm3 or percent 
reduction of 99.9% or greater. pCR was predicted in 28 
patients, while RD was predicted in the remaining 52 
patients (Fig. 4). The device predicted pCR/RD for 73 of 
80 patients correctly, for an overall accuracy of 91.2 (95% 
CI 82.8–96.4%; Clopper-Pearson interval).

Device performance assessed via AUROC was found to 
be state-of-the-art (AUROC = 0.91; range 0.75–0.94). TS 
performance was robust throughout receptor subtypes, 
with the highest pCR prediction accuracy observed in 
TNBC patients at 93.8% (95% CI 55.5–99.8%) with a 
sensitivity of 90%, and the lowest seen in HR+/HER2− 
patients where the accuracy was 75% (95% CI 68–93.2%) 
corresponding to the lowest sensitivity of 50% (Table  3, 
Additional file  1: Fig.  S2). The lower performance in 
HR+/HER2− patients was observed in a prior study [22], 
however the performance relative to other subtypes was 
not as extreme. The algorithm performance  was also 
robust across chemotherapy regimens with a prediction 
accuracy of over 89% for both anthracycline (n = 33) and 
non-anthracycline (n = 47) regimens (Additional file  1: 
Table 1).

Next, probability of EFS was modeled to assess the 
prognostic ability of TS prediction of pCR versus RD 
compared to pathological assessment of pCR versus 
RD. TS-simulated pCR was associated with a 5-year 
ROR with a hazard ratio (HR) = − 1.99 [ − 3.96,  − 0.02] 
(95% CI; p = 0.043) while the clinically assessed pCR 
data had a HR = − 1.76 [ − 3.75,0.23] (95% CI; p = 0.054) 
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demonstrating similar prognostic performance between 
TS predictions and pathological assessment (Fig. 4).

Discussion
Advances in breast cancer oncology within the last dec-
ade have been largely in genomic profiling [15, 40, 41]. 
There is burgeoning recognition of the intricacies of 
tumor heterogeneity [42–44] that confounds expected 
treatment response to targeted pharmaceutical manage-
ment, and newer oncologic insights are manifesting at 
an unprecedented rate [45, 46]. Existing unimodal tech-
nologies, including single cell biology [47, 48], organoids 
[49, 50] and spatial biology [47, 51] platforms, attempt to 
recapitulate varying aspects of multi-omics, biomarker 
expression patterns, and the complexity that stems from 

cells organizing and interacting in the 3D tumor micro-
environment. Here, we perform a study of an inde-
pendent cohort using a previously validated biophysical 
platform, TumorScope  Predict. Predicated on mathe-
matical modeling algorithms that incorporate dynamic, 
high-resolution imaging [52–56], this technology confers 
capacity to identify and manage tumor heterogeneity, 
such as region-specific vascular density, perfusion, sim-
ulated nutrient availability and simulated drug delivery 
to forecast tumor response on a case-by-case basis (see 
Tumor Segmentation and Model Design).

While traditional radiomics, the quantitative analysis of 
medical images, is a field of active investigation and inter-
est, it relies on static 2D  or 3D images for analysis. For 
example, a multivariate study [57] using MRI to predict 

Fig. 2  TumorScope Predict model. A DCE-MRI imaging data form the basis of a patient’s virtual tumor via a deep learning-based segmentation 
model that classifies each voxel as comprising primarily tumor, vascular, fibroglandular, adipose, skin, and chest “tissues”. B Along with imaging data 
extracted from the hospital’s PACS server, a patient’s demographic and pathology data are extracted from the EMR and LIMS servers, respectively, 
to create a unique profile of the tumor biology in the virtual tumor. C A rendering of a 3D virtual tumor model for a patient is shown, along with a 
comparison of the pre-treatment segmentation with the MRI as MIPs through the volumes (D) and as slices through the 3D volume at the point of 
greatest tumor area (E). The virtual tumor model is input into the TS simulation engine, which simulates the response to treatment longitudinally 
throughout treatment to the surgery date. This pre-surgery data can be compared directly to MRIs taken for surgery planning (F). G The TS platform 
simulates the spatial gradients of important drugs and nutrients, and how the tumor dynamically responds to them, capturing drivers of response
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Fig. 3  TumorScope Predict tumor volume predictions. A Representative figures of TS tumor volumetric response simulations. Each plot represents 
an individual patient where clinical (ground truth) volumetric measures (black dots) are compared to TS-simulated volume (blue continuous line). B 
Absolute relative error (%) in volume change between actual vs predicted pCR and residual volumes (top). Volume error (cm3) in the inter-treatment 
(T1 and T4) MRIs up to the time of surgery (bottom). Red lines indicate the MRI level of agreement [39]. C Volume comparisons between predicted 
and actual volumes are shown for all timepoints (top left), pre-treatment (bottom left), RD (top right) and pCR (bottom right)

Table 2  Absolute relative error in volume change and relative error in volume predictions of TumorScope Predict

Absolute relative error (%) Relative error (%)

Mean (std. dev.) Median (MAD) Mean (std. dev.) Median (MAD)

All patients 6.57 (12.1) 1.45 (1.44) 1.38 (13.8) − 0.02 (1.45)

Post-treatment (residual) 10.8 (14.8) 6.52 (4.62) 3.69 (18.0) 0.97 (5.55)

Post-treatment (pCR) 1.41 (3.90) 0.03 (0.03) − 1.41 (3.90) − 0.03 (0.03)
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pCR found that for all patients receiving NAT, pCR pre-
diction failed to reach an AUROC over 0.660 [57], sug-
gesting only modest gains in prediction performance. 
Radiomic features were only considered for prediction 
which may also explain lower performance. The addi-
tion of pre-treatment clinical information with machine 
learning increases the accuracy of pCR predictions [58], 
however, this approach remains suboptimal as it still fails 
to account for tumor progression and response through-
out therapy. Even in vitro methods, such as organoids and 
in  vivo methods, such as xenografts, which explore the 
behavior of living cells in response to a variety of targeted 
therapies, still lack the fundamental capacity to analyze 

tumor heterogeneity and complexity in relation to the 
dynamic communication and interplay between geneti-
cally or transcriptionally distinct regions of a tumor. 
Instead, both organoids and xenografts approach tumors 
as essentially a series of clonal experiments, without 
incorporating the higher-order behavior of a structurally 
diverse tumor. Thus, these methods do not truly address 
the heterogenous nature of the tumor that is thought to 
be a critical driver of therapy response.

The TumorScope technology works by amalgamating 
the fields of perfusion kinetics and computational biol-
ogy to simulate the biophysical interactions between the 
tumor, surrounding tissues, nutrients and drugs in a 3D 

Fig. 4  TumorScope Predict prognostic assessment. Graphs represent the probability of recurrence-free survival of patients that were clinically 
(left) evaluated for pCR (n = 27) or RD (n = 53) against TS predicted (right) pCR (n = 28) and RD (n = 52). TS predictions had similar prognostic value 
as clinical assessments. The zero-time point represents the date at which the patient had definitive surgery post-neoadjuvant treatment. Statistics 
were computed at 5-years post-surgery

Table 3  TumorScope Predict outcome metrics, overall and subgroups

Accuracy represented as area under the receiver operating characteristic curve (AUROC) for the predicted pCR, computed either from a cutoff in the final volume or a 
cutoff in the response percentage (95% confidence intervals shown in parentheses; NA indicates confidence interval is undefined)

Overall (n = 80) TNBC (n = 18) HR−/HER2+ (n = 10) HR+/HER2− (n = 28) HR+/HER2+ (n = 24)

AUROC (with volume threshold) 0.910 0.938 0.917 0.75 0.919

AUROC (with response threshold) 0.905 0.900 0.812 0.823 0.944

Accuracy 0.912 (0.828, 0.964) 0.944 (0.727, 0.999) 0.900 (0.555, 0.998) 0.893 (0.718, 0.977) 0.917 (0.730, 0.989)

Sensitivity 0.889 (0.708, 0.977) 0.900 (0.555, 0.998) 1.000 (0.398, 1.000) 0.500 (0.068, 0.932) 1.000 (0.664, 1.000)

Specificity 0.925 (0.818, 0.979) 1.000 (0.631, 1.000) 0.833 (0.359, 0.996) 0.958 (0.789, 0.999) 0.867 (0.595, 0.983)

PPV 0.857 (0.615, 0.958) 1.000 (NA, NA) 0.800 (0.309, 0.973) 0.667 (0.018, 0.996) 0.818 (0.460, 0.960)

NPV 0.942 (0.883, 0.972) 0.889 (0.500, 0.985) 1.000 (NA, NA) 0.920 (0.880, 0.947) 1.000 (NA, NA)
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model. The inputs for the technology include non-inva-
sive high-resolution image acquisition (DCE-MRIs) and 
standard of care pre-treatment information including 
demographics, pathological report data (including availa-
ble molecular markers). Once basal conditions are estab-
lished, the platform simulates physician-chosen drug 
regimens with fundamental in vivo cancer biological pro-
cesses (e.g., metabolic activity) in a multi-scale biophysi-
cal computational model over the axis of time to create 
an adaptive, 4D model (3D model over time).

Precedence for this technology exists in preclinical 
models; Zangooei et  al. demonstrated that microscale 
computed tomography (microCT) enabled computa-
tional simulations (multi-scale modeling) to recapitulate 
the dynamics of tumor growth in a rodent model [21]. In 
the current study, we found that TS-simulated tumors, 
as compared with radiographically-assessed tumors 
from MRIs, demonstrated highly accurate prediction of 
both tumor volume and percent change in tumor vol-
ume throughout therapy, with low median absolute error 
(Fig. 3, Table 2). Tumor volume has been used in several 
approaches to assess clinical outcomes either as an inde-
pendent prognostic indicator [59] or in combination with 
other prognostic indicators such as pCR [60], residual 
cancer burden (RCB) [61], RFS [62, 63], progression-
free survival (PFS) [64] and OS [64–67]. Previous stud-
ies have used initial volume parameters from 2D images 
obtained from medical images (MRIs and PET/CT scans) 
to predict long-term outcomes (pCR [68, 69] and RFS 
[62, 63]) in breast cancer [62, 63] lung [68, 69] and rec-
tal cancer [70]. However, the accuracy of these method-
ologies has only reached an AUROC ranging from 0.62 
[70] to 0.73 [69]. The TS platform uses multi-scale mul-
timodal approach to predict the tumor’s response over 
time; attained pCR predictions with predictive accuracy 
ranging from 0.893 to 0.944, associated with an over-
all AUROC of at least 0.91. Importantly, overall perfor-
mance of TS was robust in all breast cancer subtypes, 
indicating the tool may offer value in the NAT decision-
making process. This substantial improvement relative to 
existing technologies not only advances the field of preci-
sion oncology, but additionally increases the likelihood of 
meaningful impact on clinical care.

More importantly, these volume predictions are fore-
casted based on physician-chosen drug dose and timing 
of standard of care chemotherapeutic regimens; newer 
agents (immunotherapy, antibody–drug conjugates) are 
actively being added into the platform’s drug repertoire 
to accommodate the changing landscape of pharmaceu-
tical management of breast cancer. TS demonstrated 
high fidelity and accuracy near or above 90% in predic-
tion of tumor response to both anthracycline and non-
anthracycline based regimens. As anthracyclines have 

been a major target for de-escalation of therapy, given 
their known cardiotoxicity and association with second-
ary leukemia, these results are encouraging to inform 
decision-making and assist with understanding response 
to physician-chosen regimen. The proposed biophysical 
modeling approach thus confers domain over an expanse 
of clinical support areas ranging from de-escalation to 
prognostic predictions related to tumor volume such as 
pCR, RD and associated RFS.

While pCR at the clinical trial cohort level may not be 
generally indicative of an overall superior therapy [23, 
71], it has proved to have meaningful prognostic value 
for individual patients, particularly for the TNBC and 
HER2+ subtypes [72]. TS-generated predictions of RFS 
derived from pCR mirrors RFS from clinically assessed 
pCR (Fig. 4). As TS predictions [23, 73, 74] rely on vol-
ume-based metrics (tumor volume rendered in 3D, 
changes in the tumor over time in 4D), these outputs pro-
vide insights on residual disease including morphology 
and volume. Thus, TS has the capacity to capture resid-
ual cancer burden (RCB) [73] in breast cancer, as well 
as potential for use in other cancers with the Response 
Evaluation Criteria in Solid Tumors (RECIST) [75] crite-
ria. Given these outputs, volume-based tumor responses 
can be stratified into risk categories and assist in evaluat-
ing long-term prognosis.

There are certain limitations to our model. Foremost, 
prediction of pCR using TS is performed on analysis of 
the primary tumor only; no axillary lymph node disease 
is considered. However, studies have shown that lymph 
node histology is similar to that of the primary tumor; 
therefore, modeling the primary tumor could be repre-
sentative of the actual tumor response [76]. Indeed, Fay-
anju et al. found that in a study of over 20,000 patients, 
only 1.5% of patients achieved pCR in the primary tumor 
but not the lymph nodes [77], and thus, one might antici-
pate that the error in overpredicting pCR would be small. 
Also, it depends on the availability and quality of the 
medical images. Not all patients are indicated to receive 
a pre-treatment DCE-MRI scan. Given that roughly 5.6% 
(5/89) of patients were excluded due to a missing pre-
treatment MRI, this is hurdle for use, and potentially 
a source of bias in the study. Additionally, MRI quality 
will depend on the machines and techniques used and 
can affect the precision of the technology. Our platform 
models NAT per standard-of-care recommended regi-
mens, and in this assessment potential treatment inter-
ruptions, delays and changes in medication may not 
have been considered. Finally, the nature of a single site 
study with a limited number of patients has resulted in 
wide confidence intervals; however, our results remain 
consistent with TS performance observed in concurrent 
validation studies [22, 33] with a multi-center analysis 
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that addresses a much larger cohort of patients, currently 
underway. One assumption of the study is that multi-
ple tumors in a single patient are independent, which 
may bias the statistics. One African American patient 
with HR+/HER2− invasive ductal carcinoma had bilat-
eral cancer. These tumors differed only in that the left 
tumor was grade 2, while the right was grade 3. Both 
tumors were predicted (correctly) to have residual dis-
ease, which may slightly skew the statistics for the HR+/
HER2− cohort. Despite any limitations imposed by these 
constraints, TS performance was robust across all sub-
types. While the focus of this validation study is breast 
cancer, the potential to use biophysical simulation mode-
ling approaches for other solid tumors is an area of active 
investigation for our team with encouraging preliminary 
results.

This validation study demonstrates that TS accurately 
predicts patient-specific tumor volume response to NAT 
across all breast cancer subtypes. These capabilities allow 
the platform to predict pCR in a patient-specific manner, 
which could in turn be used to optimize chemotherapy 
regimens and escalation/de-escalation decisions, predict 
downstaging, and inform the physician–patient discus-
sion. By predicting tumor volume across the timescale of 
cancer therapy, TS offers predictive capacity with regards 
to pCR, RCB and EFS and is a useful technology for adju-
vant therapy planning. Changes in volume, morphology, 
and particularly size (diameter) derived from the simu-
lations in the current study with associated prognostic 
metrics can be used in patients diagnosed with other 
types of solid tumors, advancing precision oncology 
across a spectrum of disease.

While this and previous studies demonstrate method 
performance in a limited set of independent centers, a 
broader multi-center validation consisting of a signifi-
cantly larger patient population is necessary to account 
for patient and clinical care variability seen in current 
practice.
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