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Abstract 

Background:  The biological phenotype of tumours evolves during neoadjuvant chemotherapy (NAC). Accurate pre-
diction of pathological complete response (pCR) to NAC in the early-stage or posttreatment can optimize treatment 
strategies or improve the breast-conserving rate. This study aimed to develop and validate an autosegmentation-
based serial ultrasonography assessment system (SUAS) that incorporated serial ultrasonographic features throughout 
the NAC of breast cancer to predict pCR.

Methods:  A total of 801 patients with biopsy-proven breast cancer were retrospectively enrolled from three institu-
tions and were split into a training cohort (242 patients), an internal validation cohort (197 patients), and two external 
test cohorts (212 and 150 patients). Three imaging signatures were constructed from the serial ultrasonographic 
features before (pretreatment signature), during the first–second cycle of (early-stage treatment signature), and after 
(posttreatment signature) NAC based on autosegmentation by U-net. The SUAS was constructed by subsequently 
integrating the pre, early-stage, and posttreatment signatures, and the incremental performance was analysed.
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Background
Breast cancer is the most common cancer and the lead-
ing cause of cancer-related deaths in women [1]. Neo-
adjuvant chemotherapy (NAC) is the standard of care 
for patients with locally advanced breast cancer, and it is 
increasingly used for patients with operable breast can-
cer to allow more conservative surgery in the breast and 
axilla [2]. However, not all patients benefit from NAC, 
and the reported rates of pathological complete response 
(pCR) are generally less than 70% [3–5]. Accurate predic-
tion of pCR allows for early intervention for non-pCR 
patients to increase pCR rates [6] and guides clinicians in 
choosing breast-conserving surgery. However, no reliable 
biomarkers currently exist to aid in pCR prediction.

Magnetic resonance imaging (MRI) is one of the main 
imaging methods used to monitor the response to NAC 
in breast cancer [7–9]. However, few patients can use 
MRI to monitor treatment response in each cycle of NAC 
because of its high cost and inflexibility. Ultrasound is 
widely used to evaluate treatment response in clinical 
practice due to its low cost and convenience. In addition, 
ultrasound is recommended by guidelines to evaluate 
or re-evaluate the lesions before, during, and after NAC 
[2, 10]. However, the performance of conventional ultra-
sound remains far from satisfactory, with a false negative 
rate (FNR) for pCR up to 39.2% [11].

Recently, radiomics has been used for breast cancer 
diagnosis, treatment assessment, and prognosis predic-
tion [12–17]. Indeed, radiomics based on the analysis 
of medical images showed the ability to noninvasively 
describe tumour phenotypes with more predictive power 
than routine clinical methods [12]. However, in tradi-
tional quantitative image analysis, tumour segmentation 
is delineated manually by radiologists, which is time-
consuming and has inter/intraobserver variability [12, 
17]. In contrast, deep learning has certain advantages in 
segmentation speed and reducing variability. Neverthe-
less, most previous studies have focused on identifying 
imaging biomarkers at a single time point [16, 18, 19]. 
Biological behaviour is a dynamic ecosystem with various 

cellular contributions; hence, tumour heterogeneity may 
not be fully captured at a single time point [20, 21]. It may 
be beneficial to integrate serial ultrasound images during 
NAC as a way to monitor changes in tumour biological 
characteristics [12, 17, 22].

Thus, in this study, we developed and validated a deep 
learning-based serial ultrasonography assessment system 
(SUAS) for predicting the neoadjuvant chemotherapy 
response of breast cancer using serial ultrasound images.

Methods
Participants and data acquisition
The ethics committees of the Guangdong Provincial Peo-
ple’s Hospital (GPPH), Yunnan Cancer Hospital (YNCH), 
and Shanxi Province Cancer Hospital (SPCH) approved 
this multicentre retrospective study. The board waived 
the requirement for informed consent because of the 
study’s retrospective nature. All data in the study were 
deidentified and anonymized.

Eligible female patients diagnosed with breast cancer 
who completed NAC, followed by surgery, were retro-
spectively recruited from May 2015 to June 2020 accord-
ing to the inclusion and exclusion criteria (Additional 
file  1: SI and Fig. S1). Serial ultrasonographic images of 
the target lesions were acquired at three time points: (1) 
pretreatment ultrasonography, within one week before 
NAC (Phase 0); (2) early-stage ultrasonography, dur-
ing the first–second cycle of NAC (Phase 1); and (3) 
posttreatment ultrasonography, after NAC and within 
1 month before surgery (Phase 2) (Fig.  1A). The cross-
sectional image slice with the largest dimension of the 
tumour was selected for subsequent analysis. All images 
were reviewed by a radiologist with 10 years of experi-
ence in breast imaging (Y.L.). Details of the ultrasound 
scanners and probes used in the three centres are sum-
marized in Additional file 1: Table S1.

Due to the retrospective nature of this study, the 
patients were not randomized into different cohorts. 
Patients enrolled from YNCH were divided into the 
training and internal validation cohorts between May 

Results:  The SUAS yielded a favourable performance in predicting pCR, with areas under the receiver operating char-
acteristic curve (AUCs) of 0.927 [95% confidence interval (CI) 0.891–0.963] and 0.914 (95% CI 0.853–0.976), compared 
with those of the clinicopathological prediction model [0.734 (95% CI 0.665–0.804) and 0.610 (95% CI 0.504–0.716)], 
and radiologist interpretation [0.632 (95% CI 0.570–0.693) and 0.724 (95% CI 0.644–0.804)] in the external test cohorts. 
Furthermore, similar results were also observed in the early-stage treatment of NAC [AUC 0.874 (0.793–0.955)–0.897 
(0.851–0.943) in the external test cohorts].

Conclusions:  We demonstrate that autosegmentation-based SAUS integrating serial ultrasonographic features 
throughout NAC can predict pCR with favourable performance, which can facilitate individualized treatment 
strategies.

Keywords:  Deep learning, Breast cancer, Neoadjuvant chemotherapy, Serial ultrasonography
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2015 and June 2018 and between July 2018 and June 2020 
because this institute had the largest number of cases, 
while others recruited from GPPH and SPCH were used 
as two independent external test cohorts (Additional 
file 1: Fig. S1).

Immunohistochemical evaluation
The oestrogen receptor (ER)/progesterone receptor (PR) 
status was considered positive if ≥ 1% of tumour cells 
were positive in immunohistochemical (IHC) stain-
ing [23]. For Ki-67 status, the cut-off values were < 20% 
and ≥ 20%. The human epidermal growth factor recep-
tor 2 (HER2) status was considered positive if IHC was 
scored as 3+ , and negative if it was 0 or 1+ . In  situ 
hybridization (ISH) was employed for cells with IHC 
scores of 2+ , and the HER2 status was considered posi-
tive with amplified result and negative with nonamplified 
results [24, 25].

Assessment of pathological response to NAC
Six or more cycles of taxane-, anthracycline-, or anthra-
cycline and taxane-based NAC protocols were adminis-
tered to all patients (Table  1) according to the National 
Comprehensive Cancer Network (NCCN) and China 
Anti-Cancer Association breast cancer guidelines [10, 
26]. For HER2(+) patients, an additional prescription 
of trastuzumab (8  mg/kg loading dose, 6  mg/kg main-
tenance dose) was given. Some of the HR(+)/HER2(−) 
patients received exclusive neoadjuvant endocrine ther-
apy at the same time according to the recommendation.

The postoperative assessment of pathological response 
was performed based on the American Joint Commit-
tee on Cancer staging system [27, 28]. pCR status was 
defined as no residual invasive disease in the breast and 
lymph nodes(with or without ductal carcinoma in  situ)
(ypT0/isypN0). All the specimens were evaluated by 
pathologists (with at least 9 years of experience).

To compare the predictive performance between the 
constructed models (see below) and radiologist inter-
pretation, a board-certified radiologist with 10 years of 
experience (Y.L), who was blinded to the clinical records, 
independently reviewed the posttreatment ultrasound 
images, and patients without visible target lesions in the 
ultrasound image were classified as pCR [29].

Tumour segmentation
Manual tumour segmentation is a time-consuming task, 
especially for ultrasound images that are affected by 
acoustic interference, signal attenuation, and artefacts, 
which may potentially increase the difficulty of manual 
segmentation. We proposed a deep learning segmenta-
tion model based on the 2D U-Net to achieve automated 
tumour segmentation (Fig. 1B, C). The regions of interest 
(ROIs) were manually delineated using itk-SNAP (www.​
itksn​ap.​org) to obtain the ground truth by a trained radi-
ologist (M.L, with 11 years of experience), then, an expert 
radiologist (Y.W, with 16 years of experience) confirmed 
the ROIs. In cases of disagreement, the ROI was adju-
dicated by a senior radiologist (Y.X.W, with 20  years of 
experience). The tumour ROI included the surround-
ing chords and burrs. If the tumour lesion was not vis-
ible after the NAC, the tumour bed fibrosis, the biopsy 
marker, and/or surrounding anatomic landmarks before 
NAC were used as the reference for ROI placement.

The segmentation network was based on the U-Net 
architecture proposed by Ronneberger [30]. The archi-
tecture consisted of two parts: (1) the encoding network, 
consisting of cascaded convolutional layers, maximum 
pooling layers, and full convolutions with skip connec-
tions, the purpose of which was to reduce the resolution 
of the input images and extract progressively abstract fea-
tures; and (2) the decoding network, composed of a con-
volutional layer and an upsampling layer, the purpose of 
which was to offer an expanding path for resuming the 

(See figure on next page.)
Fig. 1  Study design and workflow. A Schematic diagram of ultrasound images acquisition during diagnosis and treatment of patients with breast 
cancer who received NAC. Pre-treatment ultrasonography (baseline ultrasonography, denoted as Phase 0), during the first–second cycle of NAC 
(Phase 1) and posttreatment (Phase 2) ultrasonography were acquired for each patient. B Patients with breast cancer undergoing NAC were divided 
into the training cohort (YNCH, N = 439, 1317 images) and two external test cohorts (GPPH, N = 212, 636 images, and SPCH, N = 150, 450 images, 
respectively). The YNCH cohort was used for training an automated tumour segmentation model, and the performance was tested in the GPPH 
and SPCH cohorts. The ground truth for each image was delineated by experienced radiologists. C Schematic diagram of automated tumour 
segmentation (U-Net). The middle row of the network output represented the image segmented by the network, and the bottom row represented 
the ground truth. D Dice similarity coefficient (DICE) of trained automated segmentation model in the training and external test cohorts (large 
size: ≥ 2cm, small size: < 2cm). The subgroup analysis of DICE was also performed in Phase 0, Phase 1, Phase 2 (E), and different tumour sizes (F). 
G Images were segmented by the automated segmentation model for feature assessment. Three signatures (P0-Signature, P1-Signature and 
P2-Signature) were generated and further applied to build the SUAS combined with clinical factors. The performance of SUAS in distinguishing the 
pathological response (pCR vs. NpCR) was validated in two external test cohorts. Abbreviations: NAC: neoadjuvant chemotherapy; YNCH: Yunnan 
Cancer Hospital; GPPH: Guangdong Provincial People’s Hospital; SPCH: Shanxi Province Cancer Hospital; DICE: Dice similarity coefficient; SUAS: serial 
ultrasonography assessment system; pCR: pathological complete response; NpCR: non-pathological complete response

http://www.itksnap.org
http://www.itksnap.org
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Fig. 1  (See legend on previous page.)
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spatial resolution of the extracted feature map to the orig-
inal level of the input image (Additional file  1: Fig. S2). 
The details are provided in Additional file 1: SI II–III and 
Fig. S2. We used the Dice similarity coefficient (DICE) to 
evaluate the accuracy of automated segmentation.

Feature extraction and signature construction
Since ultrasound images were collected from differ-
ent image acquisition machines at multiple centres, the 
intensity distribution of the images was quite different. 
We first used the Z-Score method to standardize ultra-
sound images before extracting image features. Then, 
we further used the cosine similarity and Bland‒Alt-
man plots to compare the similarity and consistency 
between the image features that were extracted from 
automated and manual segmentation by the Pyradiom-
ics toolkit. Next, the ComBat model was used to reduce 
the batch effect caused by the images acquired by differ-
ent machines. Finally, singular value decomposition and 
reconstruction (SVD-R), XGBoost, and support vector 
machine–recursive feature elimination (SVM-RFE) algo-
rithms were used to execute feature selection. The details 
are provided in Additional file 1: SI IV–VI (Fig. 1G, Addi-
tional file 1: Fig. S3).

After feature selection, the optimal feature sets with 
correlations with pCR were selected for phase 0 (P0), 
phase 1 (P1), and phase 2 (P2). They were further used 
to build distinct single-time point prediction signatures 
(P0-Signature, P1-Signature, P2-Signature) by multivari-
able logistic regression.

Model development and validation
Each single time point prediction signature generated a 
prediction score for each patient, which reflected the new 
characteristics of the tumour at different time points. 
Then, three prediction scores and clinicopathological 
factors were applied to generate four models to form the 
SUAS (Fig. 1G) to predict the pCR of patients receiving 
NAC: (1) the clinicopathological prediction model, which 
was built based on clinicopathological factors; (2) Model 
1, which was built based on the P0-Signature and poten-
tially significant clinicopathological factors; (3) Model 2, 
an early-stage treatment model, which was built based on 
Model 1 plus the P1-Signature; and (4) Model 3, which 
was built based on Model 2 plus the P2-Signature.

The application of SAUS was also investigated in the 
three molecular subtypes of breast cancer, namely, the 
HER2 (+),HER2(−)/HR(+), and triple-negative sub-
groups. To further validated the performance of mod-
els, we merged three datasets into one superset and then 
randomly split into training-validation-test cohort with a 
ratio of 6:2:2 (training cohort: n = 481, validation cohort: 

n = 160 and test cohort: n = 160). Then, we evaluated the 
predictive performance of the P0-Signature, P1-Signa-
ture, P2-Signature and SUAS model in each cohort.

Statistical analysis
Continuous variables were expressed as the 
mean ± standard deviation (SD) or medians with 
interquartile range (IQR), as appropriate. Continu-
ous and categorical variables were compared between 
groups utilizing Student’s t test or the χ2 test. All sta-
tistical analyses were executed in R (version 3.5.0). A p 
value < 0.05 was considered statistically significant, and 
all tests were two-sided.

The cosine similarity, Bland‒Altman analysis and 
intraclass correlation coefficient (ICC) were used to 
analyse the similarity, consistency and agreement of the 
image features from automated segmentation and man-
ual segmentation. The area under the receiver operat-
ing characteristic curve (AUC) and other performance 
evaluation metrics (Brier score, accuracy, sensitivity, 
specificity, positive predictive value [PPV], and negative 
predictive value [NPV]) were used to compare the per-
formance between models (clinicopathological model 
and Models 1–3) and human interpretation. The 95% 
confidence intervals (95% CIs) were calculated using 
the bootstrapping strategy (n = 2000). DeLong’s test, 
decision curves, the net reclassification improvement 
(NRI) test, and the integrated discrimination improve-
ment (IDI) test were applied to assess the predictive 
performances of the models.

Results
Clinicopathological characteristics
In total, there were 1395 consecutive female patients 
potentially eligible for enrolment in the present study 
(YNCH, 718 patients; GPPH, 329 patients; SPCH, 
348 patients), and 594 patients (YNCH, 279 patients; 
GPPH, 117 patients; SPCH, 198) were excluded. There-
fore, 801 female patients (mean age 48 ± 9  years, range 
25–75  years) were included in the final study cohorts, 
with 242 (YNCH), 197 (YNCH), 212 (GPPH), and 150 
(SPCH) patients in the primary, internal validation and 
external test cohorts (Additional file  1: Fig. S1). Table  1 
summarizes the clinicopathological characteristics of all 
patients.

There was no significant difference in the pCR rates 
among the primary, internal validation, and external 
test cohorts (29.3% vs. 28.9% vs. 36.2% [GPPH] vs. 25.3% 
[SPCH], p = 0.059). No significant difference in age, 
menstruation status, Ki-67 status, or NAC protocols 
(all p > 0.05) was observed between the pCR and NpCR 
groups in any of the four cohorts. In addition, ER and 
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PR status were found to be significantly correlated with 
pCR in all cohorts except the training cohort. Her2 sta-
tus showed no significant difference only in external test 
cohort 2.

Deep learning enables comparability between automated 
and manual tumour segmentation.
The deep learning segmentation network we trained 
achieved satisfactory segmentation accuracy 
(DICE > 0.750) in two external test cohorts (Fig.  1D). 
During NAC, the residual tumours may become scat-
tered foci distributed within the tumour bed [31], pos-
ing a great challenge for precise manual segmentation. 
However, our model demonstrated good segmentation 
accuracy for the images throughout the three phases 
(DICE > 0.780) (Fig.  1E). Meanwhile, our results showed 
that the automated model could perform effective seg-
mentation not only for large-sized, but also for small-
sized lesions (less than 2 cm) (Fig. 1F).

In addition, the similarity and consistency of the image 
features segmented by the two methods were favourable. 
A total of 3535 quantitative image features were extracted 
from automated and manual segmentation. According to 
the cosine similarity (mean > 0.900, range: 0.700–1.00) 
and Bland‒Altman test (mean difference ≤ 5.525e−11), 
the automated segmentation model demonstrated very 
close results to the manual segmentation performed by 
experienced radiologists in each cohort (Additional file 1: 
SI VI, Table  S2). Therefore, we used the automatically 
segmented image features to complete the subsequent 
analysis.

Feature assessment and SUAS construction and validation
Principal component analysis (PCA) and linear models 
show that Combat model indeed corrects the batch effect 
of machines (Additional file 1: Fig. S4). With the feature 
selection strategies, 12, 11, and 9 features were finally 
selected from phases 0–2 to build the P0-Signature, 
P1-Signature, and P2-Signature, respectively (Additional 
file  1: Table  S3). The three signatures were significantly 
different between the pCR and NpCR groups and were 
important predictors for predicting pCR at multiple time 
points (Table 1, all p values < 0.001); however, unexpect-
edly, none of the clinicopathological factors, namely, ER, 
PR, HER2, Ki-67 status, were found to be significant in 
the multivariate regression analysis (Additional file  1: 
Table  S4, all p values > 0.100). However, since previous 
studies have shown that these variables are important 
biomarkers for pCR prediction [7, 32], they were also 
built into the clinicopathological prediction model using 
the forced entry method of regression analysis. Fur-
thermore, we observed that the relative contribution of 

each clinicopathological factor (0.77–13.63%) in Models 
2–3 to predict pCR was much smaller than that of the 
radiomics signatures (25.21–46.85%) (Additional file  1: 
Table S4 and Fig. S5). Therefore, the clinicopathological 
factors were discarded in Models 1–3.

The performance of the single time point signature in 
predicting pCR was significantly superior to that of the 
clinical model (Pall < 0.001) and radiologist evaluation 
(Pall < 0.001) (Additional file  1: Table  S5). Similar results 
were found in Models 2–3 for clinical usefulness (Addi-
tional file 1: Fig. S6). Furthermore, adding the single time 
point signature to another signature to form a multi-
time point model significantly improved the prediction 
for pCR (Fig. 2A, B, Table 2, Additional file 1: Table S6). 
Additionally, in the evaluation of the relative variable 
contribution to SUAS, the highest percent contribution 
was the posttreatment signature (46.16%), followed by the 
pretreatment signature (25.21%), early-stage treatment 
signature (16.22%), and clinical factors (12.4%) (Addi-
tional file 1: Fig. S5). In clinical practice, early assessment 
of treatment response can help assess the effectiveness of 
treatment options [6]. The early-stage treatment-based 
Model 2 (P0 + P1-Signatures) was superior to existing 
methods, such as clinical models or radiologists (Fig. 3A, 
B, Table  2). A similar result was detected in Model 3 
(P0 + P1 + P2-Signatures), which aimed at preoperative 
evaluation after NAC (Fig.  3B, C, Table  2). Moreover, 
468 of 558 (83.9%) patients with NpCR (136 of 171, 123 
of 140, 115 of 135, and 94 of 112 patients in the training, 
internal validation, and two external test cohorts, respec-
tively) were successfully identified by Model 2(Fig.  3A). 
Meanwhile, 206 of 243 (84.8%) patients with pCR (63 of 
71, 47 of 57, 66 of 77, and 30 of 38 patients in the training, 
internal validation, and two external test cohorts, respec-
tively) were successfully identified by Model 3 (Fig. 3C). 
Finally, the subgroup analysis of SUAS was implemented, 
and Models 2 and 3 achieved better predictive perfor-
mance within the HER2(+) and HER2(−)/HR(+) sub-
groups (AUCs all > 0.860), than within the triple-negative 
subgroup (AUCs < 0.860) (Fig.  3D, E, Additional file  1: 
Table S6). The outperformance of SUAS was further vali-
dated by the NRI test (with all p < 0.001, Additional file 1: 
Table S7) and IDI test (with all p < 0.001, Additional file 1: 
Table S8). Besides, the superiority of SUAS in predicting 
pCR and NpCR status was also validated in randomly 
divided datasets (Additional file 1: Table S9).

Visualization and interpretability of SUAS
A Sankey Diagram (Fig.  4A) was employed to visualize 
the predictive accuracy of SUAS throughout NAC, which 
reflected the constituent proportions of pCR predic-
tion performance (true positivity (TpCR), true negativ-
ity (TnpCR), false positivity (FpCR) and false negativity 
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(FnpCR)) of SUAS for each prognostic factor. The dia-
gram showed that with the increment of the predictors in 
SUAS, all categories (TpCR, FpCR, FnpCR, and TnpCR) 

presented significant and constant fluidity (e.g. from 
clinicopathological factors to the P0 signature). The larg-
est shift was observed during the transition from the 

Fig. 2  Evaluation of the performance of SUAS. A The ROC curves for each constituent part (clinical factors, Phase 0, Phase 1, and Phase 2) of 
SUAS which indicated the prediction performance for pathological response (pCR vs. NpCR) in the training cohort. B The AUC values of SUAS for 
pathological response prediction at each phase were illustrated with blue lines, while the incremental AUCs of SUAS when the signature of a new 
phase was accumulated onto signatures of previous phases were illustrated with pink lines. A significant increase in pCR prediction performance 
was observed in the latter (p values < 0.05). C The probability and 95% CI in predicting the pathological response for each constituent part of SUAS 
(the orange line for the pCR group and the steel-blue line for the NpCR group). Abbreviations: SUAS: serial ultrasonography assessment system; ROC 
curve: receiver operator characteristic curve; pCR: pathological complete response; NpCR: non-pathological complete response; AUC: area under 
the curve.
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P0-Signature to the P0 + P1-Signatures, where the FpCR 
decreased by 12.4% and the TnpCR increased by 12.4%. 
Similar results were found during the transition from 
the P0 + P1-Signatures to the P0 + P1 + P2-Signatures. 
Briefly, with the accumulation of information on multiple 
prognostic factors, the proportion of false positivity pre-
diction showed a downward trend, while the proportion 
of true negativity gradually increased.

We also quantified three entropy-related feature 
changes over time in the three institutions. The results 
revealed that patients with pCR showed reduced entropy, 
while those with NpCR showed the opposite (Additional 
file 1: Fig. S7).

Meanwhile, four patients (two with pCR and two with-
out) were randomly chosen from the study population 
to explore the interpretability of SUAS by the cluster-
ing of entropy during NAC (Fig.  4B). In patients with 
NpCR, the entropy clustering within the tumour bed 
became increasingly scattered from Phase 0 to 2, with 
chords and burrs around. In patients achieving pCR, the 
entropy clustering within the tumour bed demonstrated 
increased compactness throughout the three phases, 
with a well-defined margin. This result suggested that the 
SUAS could interpret the potential biological changes in 
breast cancer throughout NAC.

Table 2  Multivariate analysis of clinicopathological model, Model 2 (the early-treatment model) and Model 3 (the posttreatment 
model)

Model 2 was built based on the P0-Signature plus the P1-Signature. And Model 3 was based on Model 2 plus the P2-Signature

ER estrogen receptor, PR progesterone receptor, HER2 human epidermal growth factor receptor, P0 Phase 0 (pretreatment), P1 Phase 1 (early-stage treatment, namely, 
during the first–second cycle of the neoadjuvant chemotherapy), P2 Phase 2 (posttreatment), OR odds ratio, 95%CI 95% confidence interval

Clinicopathological model p-value Model 2 p-value Model 3 p-value

OR 95%CI OR 95%CI OR 95%CI

Ki67

  Negative Reference

  Positive 1.436 0.783–2.633 0.240 1.716 0.815–3.615 0.153 1.985 0.858–4.594 0.107

ER

  Negative Reference

  Positive 0.742 0.333–1.657 0.465 0.559 0.212–1.470 0.236 0.700 0.242–2.024 0.509

PR

  Negative Reference

  Positive 0.990 0.427–2.302 0.984 0.701 0.258–1.904 0.484 0.768 0.231–2.548 0.664

Her2

  Negative Reference

  Positive 0.937 0.078–11.320 0.959 1.062 0.369–3.055 0.911 1.036 0.063–16.92 0.980

Subtype

  Triple-negative Reference

  HER2(+) 2.047 0.161–25.97 0.578 1.375 0.083–22.90 0.823 1.271 0.075–21.44 0.867

  HER2(−)&HR(+) 1.194 0.361–3.945 0.770 1.275 0.305–5.331 0.738 1.378 0.272–6.987 0.697

P0-Signature – – – 2.357 1.531–3.629  < 0.001 1.881 1.222–2.894 0.004

P1-Signature – – – 2.455 1.721–3.502  < 0.001 2.094 1.468–2.987  < 0.001

P2-Signature – – – – – – 2.097 1.543–2.849  < 0.001

(See figure on next page.)
Fig. 3  The performance evaluation of early-stage treatment model (Model 2) and posttreatment model (Model 3) in SUAS in all cohorts and 
subtypes of breast cancer. A, C Confusion matrices for Model 2 and Model 3 in the training and test cohorts. The number of cases correctly 
predicted, the percentage, sensitivity, specificity, positive predictive values and negative predictive values of each category was marked 
diagonally. B Area under the receiver operating characteristic curves for Model 2, Model 3 and radiologist in the training and test cohorts. D, E The 
predictive performance of Model 2 (D) and Model 3 (E) in the three subgroups, namely the Her2(+), the Her2(−)&HR(+), and the TNBC subgroup. 
Abbreviations: SUAS: serial ultrasonography assessment system; HR: hormone receptor; HER2: human epidermal growth factor receptor 2; TNBC: 
triple negative breast cancer.
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Fig. 3  (See legend on previous page.)
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Discussion
This study showed that the autosegmentation-based 
SUAS, integrating serial multitime imaging biomark-
ers throughout NAC, could accurately predict pCR in 
the training, internal validation and two external test 
cohorts. Moreover, the performance of SUAS was largely 
unaffected by the molecular subtypes. To the best of 
our knowledge, this is the first large-sample, multicen-
tre study that incorporated pre, early-stage, and post-
treatment ultrasonographic imaging features. The 
outperformance of SUAS over the clinical model, human 
interpretation, and conventional single time-point pre-
diction models indicated its potential in facilitating indi-
vidualized clinical decision-making noninvasively before 
surgery in breast cancer patients.

The most essential finding of the present study was 
the importance of serial (rather than single time-point) 
assessment in predicting the pCR of breast cancer. Breast 
cancer is a group of highly heterogeneous neoplasms 
that evolve continuously over space and time [33]. In 
particular, the dynamic response to NAC may contain a 
large amount of information that is potentially associated 
with the pathological outcome. Therefore, how to track 
the full-scale changes during NAC and whether dynamic 
imaging profiling would contribute to the improvement 
of prediction performance have become the major con-
cerns. In the present study, a trend towards an increase 
in performance with higher AUCs was noted, when new 
imaging signatures of different time-points through-
out NAC were added to the model. This was especially 
evident in Model 3 which included the posttreatment 
signature. The relative variable contribution analysis 
also confirmed that the posttreatment signature con-
tributed to 46.16% of the predictive power of SUAS, 
followed by the pretreatment signature (25.21%), early-
stage treatment signature (16.22%), and clinical factors 
(12.4%). The two latest published studies also developed 
a deep learning radiomic model from serial ultrasono-
graphic data to predict the treatment response to NAC 
in patients with breast cancer [12, 17]. However, Gu 
et  al. [17] study mainly focused on early adjustment of 
the NAC treatment strategy; thus, ultrasonographic data 
were obtained before treatment and after the second and 

fourth courses. Jiang et  al. [12] prediction model only 
focused on the preoperative prediction of pCR based on 
pre- and posttreatment ultrasonographic data to guide 
surgical options. Our work achieved accurate predic-
tion of pCR not only in the early stage (AUC of 0.874 
and 0.897 in two external validation cohorts) but also in 
posttreatment of NAC (AUC of 0.927 and 0.914 in two 
external validation cohorts) by integrating the pre, early-
stage, and posttreatment information. In the present 
study, the early prediction model (Model 2) successfully 
identified 83.9% (468 of 558) of NpCR patients, who may 
benefit from adjusting the treatment regimen; moreover, 
the preoperative model (Model 3) successfully identified 
84.8% (206 of 243) of the pCR patients who may benefit 
from breast-conserving surgery and the omission of axil-
lary node dissection. In addition, both the internal and 
external validation cohorts were included in the pre-
sent study, ensuring a more robust assessment of model 
performance. In addition, we did not employ the deep 
learning technique in model construction to avoid the 
so-called black-box phenomenon, so the results of our 
study were more explicable. We also searched MRI-based 
radiomics to predict treatment response in breast cancer. 
Most of them were based on single-time MRI features [7, 
32, 34, 35] because it is difficult for patients to undergo 
repeat MRI examination at short time intervals. Given 
the accessibility and operational simplicity of ultrasonog-
raphy, the feasibility of predicting pCR of breast cancer 
using serial ultrasonographic assessment warrants con-
sideration in clinical practice.

Another finding of this research was that the developed 
deep learning segmentation model could enable auto-
mated tumour segmentation comparable to manual seg-
mentation, with satisfactory consistency and agreement, 
which significantly decreased the annotation time for 
the application of SUAS in clinical settings. Manual seg-
mentation of the tumours is a laborious task with poten-
tial intra- and interobserver variability, especially for a 
large amount of data obtained from multiple time-points 
throughout NAC. To facilitate the feasibility of SUAS, 
quantitative analysis should be as user-friendly as possi-
ble. Therefore, the automated segmentation method was 
developed with a deep learning network (U-net). Our 

Fig. 4  Visualization and interpretability of SUAS. A The Sankey diagram of changes among the TpCR, TnpCR, FpCR, and FnpCR in difference 
prognosis factors, with the increment of the predictors in SUAS, all categories (TpCR, FpCR, FnpCR, and TnpCR) presented with significant and 
constant fluidity. B Entropy, the feature extracted from the ultrasound images of four patients, was visualized in Phases 0–2. It could be observed 
that even for patients with pCR and NpCR who had the same tumour stage, the similar NAC protocol and age (Patient A vs Patient D, Patient B vs 
Patient C), the characteristics of the ultrasound images in Phases 0–2 were not apparently different by naked eyes. But after clustering the entropy 
in the tumour area, it could be clearly found that the clustering of NpCR patients was more scattered than that of pCR patients, with chords and 
burrs around. Abbreviations: SUAS: serial ultrasonography assessment system; TpCR: true positivity; TnpCR: true negativity; FpCR: false positivity; 
FnpCR: false negativity; pCR: pathological complete response

(See figure on next page.)
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Fig. 4  (See legend on previous page.)
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findings suggest that SUAS has the potential to become 
an automatic tool for pCR assessment before surgery.

In SUAS, we identified 12, 11, and 9 different radiom-
ics features from pre-, early-stage, and post-NAC ultra-
sound images to discriminate pCR and NpCR status. 
This suggested that the biomarkers of tumour could be 
changed during NAC. However, the biological interpre-
tation of these features remains an area of active inves-
tigation [36]. A common entropy-related feature from 
serial images measured complexity of grey-level inten-
sity (Entropy, Run Entropy) and heterogeneity of texture 
patterns (Zone Entropy), possibly reflecting the texture 
of cell proliferation and tissue hypoxia, which has been 
shown to be associated with response to neoadjuvant 
therapy [37]. Among the 32 features, 15 features (such 
as Large Dependence Low Grey-Level Emphasis) were 
related to the grey level of images, which evaluate over-
all and clustered low or high grey-level intensity values. 
Changes in greyscale may reflect fibrotic and aggressive 
growth of the tumour and are associated with poor treat-
ment outcomes [38, 39]. Other features (such as cluster-
shade, skewness) are indicators that measure grayscale 
intensity and texture uniformity, which reflecting the 
intratumoural heterogeneity and slight variation of tissue 
morphology within the tumour. In total, radiomic fea-
tures evaluated in SUAS highlight tumour heterogeneity 
at a regional and local level, which, depending on types of 
feature matrix, could be linked with proliferation, angio-
genesis, and necrosis.

Currently, clinician assessment of pCR by human inter-
pretation of ultrasound images is limited due to insuffi-
cient accuracy, probably because the tumour response is 
more reflected by changes in pathological compositions 
and microenvironment, such as necrosis and fibrosis, 
rather than changes in size which can be readily per-
ceived by the naked eye [12]. We compared the perfor-
mance of the SUAS with that of clinicians for all datasets 
and found that the SUAS was far superior to the human 
experts. However, the predictive performance of clinico-
pathological factors was unfavourable in the external test 
cohorts, with a low contribution to the predictive power 
of the SUAS, probably because of the inconsistent distri-
bution of molecular types across the four cohorts.

Since different molecular subtypes of breast cancer 
may result in variable responses to NAC, we also per-
formed subgroup analysis to determine the performance 
of SUAS in the specific subtypes of breast cancer. First, 
our study suggested that the SUAS could accurately pre-
dict the pathological outcome in the HER2(−)/HR(+) 
subgroup, with the highest performance among the 
three subtypes (AUC = 0.954 in the external valida-
tion cohort), even without the posttreatment signature 

(AUC = 0.916 in the external validation cohort). Con-
ventionally, the HER2(−)/HR(+) subtype is consid-
ered insensitive to NAC, with a pCR rate < 10% [3]. For 
patients with this subtype who have large tumours but 
still desire to conserve the breast, Model 2 of the SUAS 
can assist in the early determination of potential can-
didates that can truly benefit from NAC and avoid the 
unnecessary toxic effects of chemotherapy and cost of the 
treatment. Second, patientsinHER2(+) subgroup and the 
triple-negative group are well-known for their high prob-
ability of response to NAC [3]. However, the predictive 
performance of Model 2 was relatively unsatisfactory in 
the TNBC subgroup analysis of the GPPH external test 
cohort (AUC = 0.798), probably because the proportion 
of patients with TNBC in the training cohort was the 
lowest among the cohorts (only 7 patients, 9.9%). After 
integrating the posttreatment ultrasonographic signature 
into the prediction model, the AUC increased to 0.802, 
which implied the significance of serial ultrasonography 
assessment throughout NAC. Of note, the ultrasonogra-
phy-based prediction model in our study outperformed 
the multiparametric MRI-based prediction model devel-
oped by Liu et al. [7] in most of the subgroup analyses, 
with AUCs ranging from 0.78 to 0.87 among the three 
external cohorts for the HER2(−)/HR(+) subgroup, 
0.58–0.79 for the HER2(+) subgroup, and 0.79–0.84 
for the triple-negative subgroup. This was unexpected 
because MRI has been considered the method of choice 
that provides the most correlated measurement of 
tumour size with pathological results [40]. A possible 
explanation is that the multiphase biological and patho-
physiological changes during NAC captured by serial 
ultrasonography made a considerable contribution to the 
outcome prediction, which outweighed the information 
detected by single time-point pretreatment MRI.

There were several limitations of the present study. 
First, the distribution of most patient characteristics 
and NAC regimens were not balanced among the four 
cohorts, which may have a potential influence on the 
validation of the SUAS. However, our study showed that 
the AUCs of Models 1–3 were similar between the train-
ing cohort and the other three cohorts, which implied 
the general applicability of the SUAS in various clinical 
situations. Second, only the ultrasound images obtained 
during the first–second cycle of NAC were used for 
model construction, the purpose of which was to sim-
plify the entire data procurement protocol and improve 
the feasibility of clinical evaluation. The relative variable 
contribution analysis showed that the pretreatment and 
posttreatment signatures made a greater contribution to 
the prediction performance of the SUAS. Third, the pre-
sent SUAS was meant to be a preliminary tool for patient 
stratification, which should be applied with caution 
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because of the retrospective nature of this study with 
inherent selection bias. Given the complexity of patients’ 
clinical situations, it should be noted that the surgical 
strategy must be based on the comprehensive assessment 
by the multidisciplinary team.

Conclusions
In conclusion, the present proof-of-concept study devel-
oped a feasible model (the SUAS) based on automated 
segmentation of pre, early-stage, and post-NAC ultra-
sonographic imaging features for predicting patients with 
breast cancer who could benefit from optimal therapeu-
tic management after NAC.
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