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Meta-analyses and data from large randomized trials have
clearly established that cytotoxic chemotherapy and endo-
crine therapy induce a statistically significant increase in
survival for all breast cancer patients [1-5]. Nonetheless, the
degree of benefit varies among different patient groups [6,7].
Metastatic breast cancer remains a largely incurable disease;
over 40,000 women die of breast cancer each year in the
United States alone [8]. The need for a more robust, accu-
rate, cost-effective, and rapid drug development mechanism
is clearly evident.

The value of many new drugs (in the broadest context) with
respect to increasing life expectancy remains somewhat
controversial [9,10]. Moreover, the emergence of substan-
tially more effective and less toxic new breast cancer
therapies has been slow. To some degree, this may reflect
the complexity of biological signaling in cancer cells [11]. All
existing therapies hit <500 molecular targets [12], suggest-
ing that there are many unexplored targets for drug discovery
within the human interactome that comprises possibly
1 million proteins and over 1 trillion potential interconnec-
tions. Nonetheless, there are clearly other limitations in drug
development. Less than 10% of investigational new drugs for
new molecules proceed beyond early development [13]; the
approval rate for new oncology drugs is ~5% [14].

Perhaps the lack of significant progress partly reflects the
drug development process in which preclinical animal models
play a central role. The leading causes of attrition of new
drugs are generally cited as being unpredictable toxicities
and lack of efficacy, the early identification of which are
primary goals for preclinical animal models. Moreover, the
most common toxicities are pharmacological in nature [15]
and might be expected to be evident in adequate animal
models when appropriately used. Preclinical animal models
are used primarily to predict the safety and efficacy of
investigational drugs prior to their use in humans, reflecting
the adherence of most governments to the Nuremberg Code.

This code specifically requires (among various other con-
siderations) that experiments in humans be designed based
upon the results of animal experimentation, and that the risk
to subjects should not exceed the humanitarian importance of
the problem [16]. For a typical phase I clinical trial, the
starting dose is usually based upon one-tenth of the maximum
tolerated dose (or the severely toxic dose) in the most sensitive
preclinical animal model tested. For phase 0 (microdosing)
trials, the first-in-human dose is generally estimated as one-
fiftieth of the no observable adverse effect level in rats [14].

There are certainly exceptions, but the general ability of a
maximum tolerated dose estimate in animal models to provide
a reasonable prediction of the maximum tolerated dose in
humans is established. This seems to hold for cytotoxic drugs
generally [17] and within specific classes of these drugs [18],
particularly when dosing is adjusted across species using
body surface area (mg drug/m2). For investigational new
drugs, the US Federal Drug Administration requires toxicity/
safety data from two species (one rodent and one
nonrodent). While some human toxicities are overpredicted or
underpredicted [19], this approach predicts the nature of
toxicity in humans with ~70% concordance [20]. When
toxicities are concordant, these arise in humans within
1 month in almost 95% of instances [20]. While preclinical
animal models are imperfect, viable alternatives for selecting
safe doses for first-in-human studies are not yet evident or
likely to become widely accepted in the immediate future.

Preclinical studies also provide the opportunity to measure
various pharmacokinetic/pharmacodynamic properties of a
drug (absorption, distribution, metabolism, elimination, toxicity).
For molecularly targeted therapies, measuring tissue concen-
trations and whether the test drug successfully modulates the
target (or a surrogate biomarker predictive of drug action) are
important. These data can also be used to guide their
incorporation into the first-in-human studies, a major goal in
phase 0 trials for molecular proof of concept [14].
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Since efficacy in one or more preclinical animal tumor models
generally provides the rationale in support of a new anti-
neoplastic drug’s probable benefit in humans, is the primary
modifiable cause of attrition of new drugs a consequence of
poor prediction of human activity/potency from animal
models? For many years, the primary National Cancer
Institute (USA) in vivo screen for anticancer drug activity
used the L1210 and P388 murine leukemia models, which
appear to have no direct biological relationship to human
breast cancer. Nevertheless, several of the cytotoxic drugs
used in breast cancer were developed while this was a key
component of the preclinical animal model efficacy screen.
This apparent utility probably reflects its use primarily for the
screening of drugs targeted at the generic properties of DNA
replication and proliferation, rather than specific molecular
processes driving breast cancer.

Animal models currently available for testing breast cancer
drugs include xenografts of human breast cancer cell lines
growing in immunodeficient mice [21,22], chemically induced
mouse models (for example, 7,12-dimethylbenzanthracene,
N-nitrosomethylurea), virally induced mouse models (for
example, mouse mammary tumor virus, polyomavirus), and
genetically manipulated mouse models [23]. These models
should be better suited for the development of molecularly
targeted drugs that may have greater specificity/activity in
breast cancer. Nonetheless, almost two decades of the use
of these models has yet to improve fundamentally the rate at
which new breast cancer drugs are successfully moved from
the laboratory into clinical practice.

Is the high attrition rate of new drugs a function of the use of
the wrong models, poor use of the right models, and/or lack
of adequate models? Forcing the wrong question onto an
inappropriate model greatly increases the likelihood that the
data will be misinterpreted [22]. Selecting the most appro-
priate preclinical animal models for molecularly targeted
therapies may appear less challenging, provided we have an
adequate understanding of the nature of the target’s biology.
Such models, however, may also overestimate sensitivity as
they are being driven (potentially exclusively) by the molecular
target under investigation, a target that may not exhibit this
functional relationship with a comparable prevalence in
human breast tumors. For example, endocrine therapy has
proven very successful and yet only 50% of all estrogen
receptor-positive breast cancers respond to endocrine
therapies [24]. A lack of understanding of the diversity of
signaling and its redundant and degenerate properties may
lead to the development of molecular targeted therapies that
fail to live up to their full potential.

Breast cancer is a highly heterogeneous disease; hetero-
geneity is often evident even within the same tumor. Cell line
xenografts and genetically manipulated mouse models are
more homogeneous. No single model may therefore
adequately reflect the heterogeneity, and drug responsive-

ness, of any breast cancer subgroup. The relative homo-
geneity of these models may render them overpredictive or
underpredictive, depending on how prevalent their phenotype
is in the human disease. A prediction of high sensitivity often
leads to a drug being considered a strong target for human
testing. Overpredicted drugs would show limited activity/
potency in human efficacy trials and so (after significant
investment) experience a high attrition rate if the animal
models were too sensitive. While current breast cancer
models may well overpredict sensitivity relative to the human
disease, it is difficult to assess underprediction because the
lack of activity in preclinical animal models could lead them to
be dropped early. More models (individual or panels of
models) that are more representative of the heterogeneity of
the human disease are probably needed. For example,
relatively few breast cancer models show clinically relevant
patterns of spontaneous metastasis from primary tumors.

Once a drug is approved for a specific disease, it may be
used for other indications. This off-label usage is increasing
and is potentially problematic [25], particularly if applied
without adequate prior experimentation. The failure (poor
activity, unpredictable toxicity) of some new combinations
may reflect a lack of rigorous preclinical investigation. Since
there is no a priori requirement for animal efficacy studies,
clinical trials may be designed primarily from in vitro data
where adverse pharmacokinetic, pharmacodynamic, toxico-
logic, and/or molecular feedback signaling interactions may
be inadequately modeled. Adverse interactions could be
missed, such as increased toxicity and/or reduced thera-
peutic efficacy.

Conclusions and comments
The use of animal models for safety testing of investigational
drugs may be imperfect but is likely to continue for the
foreseeable future. While the use of preclinical animal models
for efficacy assessment will probably also persist, it is less
clear that current preclinical animal models are entirely
adequate or appropriately used (even when adequate), or
that an optimal panel of such models to predict efficacy with
sufficient accuracy currently exists.

Certainly, the limitations with respect to potential over-
prediction/underprediction of existing models should be
carefully considered during efficacy studies and in the
decision to proceed to studies in humans. It is also possible
that greater care is needed in the design of preclinical
studies. For example, is the choice of model most appropriate
and/or should multiple models be used, is orthotopic rather
than subcutaneous inoculation required for xenografts, might
the nature of the immune-deficient phenotype of xenografts
hosts affect drug action, does the choice of species generate
functionally different metabolite profiles from humans, and
what are the most appropriate and rigorous endpoints for
assessing efficacy [21,22]? For off-label use/combinations,
data from adequate preclinical modeling are strongly



encouraged and should, perhaps, be formally required to
guide the design of clinical trials (by institutional review
boards if not by governments). A more accurate (predictive)
preclinical animal model screening has the potential to
reduce the cost, and increase the pace, of successful drug
development for breast cancer.
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