Skip to main content

Table 3 The features of the classifiers based on machine leaning models

From: Promoter profiles in plasma CfDNA exhibits a potential utility of predicting the efficacy of neoadjuvant chemotherapy in breast cancer patients

Features

Accuracy (95% CI)

Specifity (95% CI)

Sensitivity (95% CI)

5 Mb windows-RF

0.712 (0.703–0.720)

0.753 (0.736–0.771)

0.642 (0.625–0.659)

Sub-compartments-RF

0.887 (0.880–0.893)

0.901 (0.891–0.911)

0.858 (0.846–0.870)

Promoter profiles-RF

0.953 (0.948–0.957)

0.943 (0.937–0.950)

0.973 (0.968–0.978)

5 Mb windows-LR

0.716 (0.707–0.724)

0.728 (0.711–0.746)

0.692 (0.675–0.709)

Sub-compartments-LR

0.833 (0.826–0.840)

0.822 (0.810–0.833)

0.856 (0.843–0.869)

Promoter profiles-LR

0.880 (0.874–0.887)

0.870 (0.861–0.880)

0.901 (0.891–0.911)

5 Mb windows-SVM

0.538 (0.527–0.550)

0.582 (0.550–0.614)

0.449 (0.418–0.480)

Sub-compartments-SVM

0.829 (0.823–0.836)

0.936 (0.929–0.943)

0.614 (0.598–0.630)

Promoter profiles-SVM

0.918 (0.913–0.923)

0.956 (0.950–0.961)

0.841 (0.829–0.854)

  1. Abbreviations: RF: Random Forest; LR: Logistic Regression; SVM, Support Vector Machines